TY - JOUR
T1 - Effect of diamond polishing and thermal treatment on carbon paramagnetic centers’ nature and structure
AU - Litvak, Ira
AU - Cahana, Avner
AU - Anker, Yaakov
AU - Ruthstein, Sharon
AU - Cohen, Haim
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Diamonds contain carbon paramagnetic centers (stable carbon radicals) in small concentrations (at the level of ~1 × 1012 spins/mg) that can help in elucidating the structure of the nitrogen atoms’ contaminants in the diamond crystal. All diamonds that undergo polishing are exposed to high temperatures, owing to the friction force during the polishing process, which may affect the carbon-centered radicals’ concentration and structure. The temperature is increased appreciably; consequently, the black body radiation in the visible range turns orange. During polishing, diamonds emit an orange light (at a wavelength of about 600 nm) that is typical of a black body temperature of 900◦ C or higher. Other processes in which color-enhanced diamonds are exposed to high temperatures are thermal treatments or the high-pressure, high-temperature (HPHT) process in which the brown color (resulting from plastic deformation) is bleached. The aim of the study was to examine how thermal treatment and polishing influence the paramagnetic centers in the diamond. For this purpose, four rough diamonds were studied: two underwent a polishing process, and the other two were thermally treated at 650◦ C and 1000◦ C. The diamonds were analyzed pre-and post-treatment by EPR (Electron Paramagnetic resonance), FTIR (Fourier transform infrared, fluorescence, and their visual appearance. The results indicate that the polishing process results in much more than just thermal heating the paramagnetic centers.
AB - Diamonds contain carbon paramagnetic centers (stable carbon radicals) in small concentrations (at the level of ~1 × 1012 spins/mg) that can help in elucidating the structure of the nitrogen atoms’ contaminants in the diamond crystal. All diamonds that undergo polishing are exposed to high temperatures, owing to the friction force during the polishing process, which may affect the carbon-centered radicals’ concentration and structure. The temperature is increased appreciably; consequently, the black body radiation in the visible range turns orange. During polishing, diamonds emit an orange light (at a wavelength of about 600 nm) that is typical of a black body temperature of 900◦ C or higher. Other processes in which color-enhanced diamonds are exposed to high temperatures are thermal treatments or the high-pressure, high-temperature (HPHT) process in which the brown color (resulting from plastic deformation) is bleached. The aim of the study was to examine how thermal treatment and polishing influence the paramagnetic centers in the diamond. For this purpose, four rough diamonds were studied: two underwent a polishing process, and the other two were thermally treated at 650◦ C and 1000◦ C. The diamonds were analyzed pre-and post-treatment by EPR (Electron Paramagnetic resonance), FTIR (Fourier transform infrared, fluorescence, and their visual appearance. The results indicate that the polishing process results in much more than just thermal heating the paramagnetic centers.
KW - Diamond treatments
KW - EPR spectroscopy
KW - Paramagnetic centers
UR - http://www.scopus.com/inward/record.url?scp=85121311257&partnerID=8YFLogxK
U2 - 10.3390/ma14247719
DO - 10.3390/ma14247719
M3 - Article
C2 - 34947315
AN - SCOPUS:85121311257
SN - 1996-1944
VL - 14
JO - Materials
JF - Materials
IS - 24
M1 - 7719
ER -