TY - JOUR
T1 - Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs
AU - Cheng, Xindong
AU - Du, Xia
AU - Liang, Yanping
AU - Degen, Abraham Allan
AU - Wu, Xiukun
AU - Ji, Kaixi
AU - Gao, Qiaoxian
AU - Xin, Guosheng
AU - Cong, Haitao
AU - Yang, Guo
N1 - Publisher Copyright:
Copyright © 2023 Cheng, Du, Liang, Degen, Wu, Ji, Gao, Xin, Cong and Yang.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
AB - Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
KW - hindgut
KW - methanogenesis
KW - microbiome
KW - rumen
KW - wine by-product
UR - http://www.scopus.com/inward/record.url?scp=85173830403&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2023.1264840
DO - 10.3389/fmicb.2023.1264840
M3 - Article
C2 - 37840727
AN - SCOPUS:85173830403
SN - 1664-302X
VL - 14
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 1264840
ER -