TY - GEN
T1 - Effect of image capture device on the accuracy of black-box printer models
AU - Youn, Jason
AU - Sun, Jian
AU - Ju, Yanling
AU - Kashti, Tamar
AU - Frank, Tal
AU - Kella, Dror
AU - Fischer, Mani
AU - Ulichney, Robert
AU - Adams, Guy
AU - Allebach, Jan
PY - 2014/3/3
Y1 - 2014/3/3
N2 - In the process of electrophotograpic (EP) printing, the deposition of toner to the printer-addressable pixel is greatly influenced by the neighboring pixels of the digital halftone. To account for these effects, printer models can either be embedded in the halftoning algorithm, or used to predict the printed halftone image at the input to an algorithm that is used to assess print quality. Most recently,1 we developed a series of six new models to accurately account for local neighborhood effects and the influence of a 45 × 45 neighborhood of pixels on the central printer-addressable pixel. We refer to all these models as black-box models, since they are based solely on measuring what is on the printed page, and do not incorporate any information about the marking process itself. In this paper, we will compare black-box models developed with three different capture devices: an Epson Expression 10000XL (Epson America, Inc., Long Beach, CA, USA) flatbed scanner operated at 2400 dpi with an active field of view of 309.88 mm × 436.88 mm, a QEA PIAS-II (QEA, Inc., Billerica, MA, USA) camera with resolution 7663.4 dpi and a field of view of 2.4 mm × 3.2 mm, and Dr. CID, a 1:1 magnification 3.35 micron true resolution Dyson Relay lens-based 3 Mpixel USB CMOS imaging device2 with resolution 7946.8 dpi and a field of view of 4.91 mm 6.55 mm developed at Hewlett-Packard Laboratories - Bristol. Our target printer is an HP Indigo 5000 Digital Press (HP Indigo, Ness Ziona, Israel). In this paper, we will compare the accuracy of the black-box model predictions of print microstructure using models trained from images captured with these three devices.
AB - In the process of electrophotograpic (EP) printing, the deposition of toner to the printer-addressable pixel is greatly influenced by the neighboring pixels of the digital halftone. To account for these effects, printer models can either be embedded in the halftoning algorithm, or used to predict the printed halftone image at the input to an algorithm that is used to assess print quality. Most recently,1 we developed a series of six new models to accurately account for local neighborhood effects and the influence of a 45 × 45 neighborhood of pixels on the central printer-addressable pixel. We refer to all these models as black-box models, since they are based solely on measuring what is on the printed page, and do not incorporate any information about the marking process itself. In this paper, we will compare black-box models developed with three different capture devices: an Epson Expression 10000XL (Epson America, Inc., Long Beach, CA, USA) flatbed scanner operated at 2400 dpi with an active field of view of 309.88 mm × 436.88 mm, a QEA PIAS-II (QEA, Inc., Billerica, MA, USA) camera with resolution 7663.4 dpi and a field of view of 2.4 mm × 3.2 mm, and Dr. CID, a 1:1 magnification 3.35 micron true resolution Dyson Relay lens-based 3 Mpixel USB CMOS imaging device2 with resolution 7946.8 dpi and a field of view of 4.91 mm 6.55 mm developed at Hewlett-Packard Laboratories - Bristol. Our target printer is an HP Indigo 5000 Digital Press (HP Indigo, Ness Ziona, Israel). In this paper, we will compare the accuracy of the black-box model predictions of print microstructure using models trained from images captured with these three devices.
KW - Black-box model
KW - at-field correction
KW - capture device
KW - electrophotographic printer
KW - modulation transfer function
KW - print quality
UR - http://www.scopus.com/inward/record.url?scp=84894586141&partnerID=8YFLogxK
U2 - 10.1117/12.2042611
DO - 10.1117/12.2042611
M3 - Conference contribution
AN - SCOPUS:84894586141
SN - 9780819499325
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Proceedings of SPIE-IS and T Electronic Imaging - Color Imaging XIX
T2 - Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications
Y2 - 3 February 2014 through 5 February 2014
ER -