TY - JOUR
T1 - Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere
AU - Elperin, Tov
AU - Fominykh, Andrew
AU - Krasovitov, Boris
AU - Vikhansky, Alexander
PY - 2011/5/1
Y1 - 2011/5/1
N2 - We suggest a one-dimensional model of rain scavenging of moderately soluble gaseous pollutants in the atmosphere. It is shown that below-cloud gas scavenging is determined by non-stationary convective diffusion equation with the effective Peclet number. The obtained equation was analyzed numerically in the case of log-normal droplet size distribution. Calculations of scavenging coefficient and the rates of precipitation scavenging are performed for wet removal of ammonia (NH3) and sulfur dioxide (SO2) from the atmosphere. It is shown that scavenging coefficient is non-stationary and height-dependent. It is found also that the scavenging coefficient strongly depends on initial concentration distribution of soluble gaseous pollutants in the atmosphere. It is demonstrated that in the case of linear distribution of the initial concentration of gaseous pollutants whereby the initial concentration of gaseous pollutants decreases with altitude, the scavenging coefficient increases with height in the beginning of rainfall. At the later stage of the rain scavenging coefficient decreases with height in the upper below-cloud layers of the atmosphere.
AB - We suggest a one-dimensional model of rain scavenging of moderately soluble gaseous pollutants in the atmosphere. It is shown that below-cloud gas scavenging is determined by non-stationary convective diffusion equation with the effective Peclet number. The obtained equation was analyzed numerically in the case of log-normal droplet size distribution. Calculations of scavenging coefficient and the rates of precipitation scavenging are performed for wet removal of ammonia (NH3) and sulfur dioxide (SO2) from the atmosphere. It is shown that scavenging coefficient is non-stationary and height-dependent. It is found also that the scavenging coefficient strongly depends on initial concentration distribution of soluble gaseous pollutants in the atmosphere. It is demonstrated that in the case of linear distribution of the initial concentration of gaseous pollutants whereby the initial concentration of gaseous pollutants decreases with altitude, the scavenging coefficient increases with height in the beginning of rainfall. At the later stage of the rain scavenging coefficient decreases with height in the upper below-cloud layers of the atmosphere.
KW - Altitudinal distribution
KW - Gas absorption
KW - Rain scavenging
KW - Scavenging coefficient
KW - Soluble gaseous pollutants
UR - http://www.scopus.com/inward/record.url?scp=79953281569&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2011.02.008
DO - 10.1016/j.atmosenv.2011.02.008
M3 - Article
AN - SCOPUS:79953281569
VL - 45
SP - 2427
EP - 2433
JO - Atmospheric Environment
JF - Atmospheric Environment
SN - 1352-2310
IS - 14
ER -