TY - JOUR
T1 - Effect of silica wall microporosity on the state and performance of TiO2 nanocrystals in SBA-15 matrix
AU - Zukerman, Roie
AU - Vradman, Leonid
AU - Titelman, Leonid
AU - Weidenthaler, Claudia
AU - Landau, Miron V.
AU - Herskowitz, Moti
PY - 2008/12/1
Y1 - 2008/12/1
N2 - TiO2 guest phase was incorporated by internal hydrolysis (IH) method inside SBA-15 mesostructured silica matrices with high and low microporosity (14.2% and 4.7% of microporous pore volume, respectively). TiO2 phase was located inside the SBA-15 pores in form of small crystals with anatase structure without blocking the mesopores over wide range of loadings (8-50 wt%) (N2 sorption, HRTEM and XRD). In the highly microporous SBA-15 (SBA-15-HM), the crystallization of titania anatase phase was detected at 150 °C due to initiation of the crystallization process in the micropores. This is supported by the fact that the crystallization was significantly delayed and started at 350 °C inside the SBA-15 with low microporosity (SBA-15-LM). Therefore, it was proposed that the formation of nanocrystalline titania in SBA-15 micropores initiates the nucleation stage thus enhancing the crystallization process of titania in the mesopores. Furthermore, micropores enhanced the dispersion of TiO2 phase. As a result, TiO2/SBA-15-HM adsorbed more vanadia than TiO2/SBA-15-LM. The catalytic activity in selective catalytic reduction (SCR) of NO with ammonia was proportional to the vanadia content. Thus, V2O5-TiO2/SBA-15-HM catalysts were more active than V2O5-TiO2/SBA-15-LM at all TiO2 loadings due to the higher vanadia content in TiO2/SBA-15-HM than in TiO2/SBA-15-LM. These results show that SBA-15 wall microporosity strongly affects the crystallization, state and performance of the guest phase confined in mesoporous channels of silica matrix.
AB - TiO2 guest phase was incorporated by internal hydrolysis (IH) method inside SBA-15 mesostructured silica matrices with high and low microporosity (14.2% and 4.7% of microporous pore volume, respectively). TiO2 phase was located inside the SBA-15 pores in form of small crystals with anatase structure without blocking the mesopores over wide range of loadings (8-50 wt%) (N2 sorption, HRTEM and XRD). In the highly microporous SBA-15 (SBA-15-HM), the crystallization of titania anatase phase was detected at 150 °C due to initiation of the crystallization process in the micropores. This is supported by the fact that the crystallization was significantly delayed and started at 350 °C inside the SBA-15 with low microporosity (SBA-15-LM). Therefore, it was proposed that the formation of nanocrystalline titania in SBA-15 micropores initiates the nucleation stage thus enhancing the crystallization process of titania in the mesopores. Furthermore, micropores enhanced the dispersion of TiO2 phase. As a result, TiO2/SBA-15-HM adsorbed more vanadia than TiO2/SBA-15-LM. The catalytic activity in selective catalytic reduction (SCR) of NO with ammonia was proportional to the vanadia content. Thus, V2O5-TiO2/SBA-15-HM catalysts were more active than V2O5-TiO2/SBA-15-LM at all TiO2 loadings due to the higher vanadia content in TiO2/SBA-15-HM than in TiO2/SBA-15-LM. These results show that SBA-15 wall microporosity strongly affects the crystallization, state and performance of the guest phase confined in mesoporous channels of silica matrix.
KW - Confined phase
KW - Crystallization
KW - NOx SCR
KW - SBA-15 microporosity
KW - Titania
UR - http://www.scopus.com/inward/record.url?scp=53949123927&partnerID=8YFLogxK
U2 - 10.1016/j.micromeso.2008.04.011
DO - 10.1016/j.micromeso.2008.04.011
M3 - Article
AN - SCOPUS:53949123927
VL - 116
SP - 237
EP - 245
JO - Microporous and Mesoporous Materials
JF - Microporous and Mesoporous Materials
SN - 1387-1811
IS - 1-3
ER -