TY - JOUR
T1 - Effect of surface chemistry and crystallographic parameters of tio2 anatase nanocrystals on photocatalytic degradation of bisphenol A
AU - Žerjav, Gregor
AU - Pintar, Albin
AU - Ferentz, Michael
AU - Landau, Miron
AU - Haimovich, Anat
AU - Goldbourt, Amir
AU - Herskowitz, Moti
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - The photocatalytic activity of a series of anatase TiO2 materials with different amounts of exposed (001) facets (i.e., 12% (TiO2-1), 38% (TiO2-3), and 63% (TiO2-3)) was tested in a batch slurry reactor towards liquid-phase bisphenol A (BPA, c0 (BPA) = 10 mg/L, ccat. = 125 mg/L) degradation. Photo-electrochemical and photo-luminescence measurements revealed that with the increasing amount of exposed anatase (001) facets, the catalysts generate more electron-hole pairs and OH· radicals that participate in the photocatalytic mineralization of pollutants dissolved in water. In the initial stages of BPA degradation, a correlation between % exposure of (001) facets and catalytic activity was developed, which was in good agreement with the findings of the photo-electrochemical and photo-luminescence measurements. TiO2-1 and TiO2-3 solids achieved 100% BPA removal after 80 min in comparison to the TiO2-2 sample. Adsorption of BPA degradation products onto the TiO2-2 catalyst surface was found to have a detrimental effect on the photocatalytic performance in the last stage of the reaction course. Consequently, the global extent of BPA mineralization decreased with the increasing exposure of anatase (001) facets. The major contribution to the enhanced reactivity of TiO2 anatase (001) surface is the Brønsted acidity resulting from dissociative chemisorption of water on a surface as indicated by FTIR, TPD, and MAS NMR analyses.
AB - The photocatalytic activity of a series of anatase TiO2 materials with different amounts of exposed (001) facets (i.e., 12% (TiO2-1), 38% (TiO2-3), and 63% (TiO2-3)) was tested in a batch slurry reactor towards liquid-phase bisphenol A (BPA, c0 (BPA) = 10 mg/L, ccat. = 125 mg/L) degradation. Photo-electrochemical and photo-luminescence measurements revealed that with the increasing amount of exposed anatase (001) facets, the catalysts generate more electron-hole pairs and OH· radicals that participate in the photocatalytic mineralization of pollutants dissolved in water. In the initial stages of BPA degradation, a correlation between % exposure of (001) facets and catalytic activity was developed, which was in good agreement with the findings of the photo-electrochemical and photo-luminescence measurements. TiO2-1 and TiO2-3 solids achieved 100% BPA removal after 80 min in comparison to the TiO2-2 sample. Adsorption of BPA degradation products onto the TiO2-2 catalyst surface was found to have a detrimental effect on the photocatalytic performance in the last stage of the reaction course. Consequently, the global extent of BPA mineralization decreased with the increasing exposure of anatase (001) facets. The major contribution to the enhanced reactivity of TiO2 anatase (001) surface is the Brønsted acidity resulting from dissociative chemisorption of water on a surface as indicated by FTIR, TPD, and MAS NMR analyses.
KW - Anatase (001) facets
KW - Bisphenol A
KW - Heterogeneous photocatalysis
KW - Nanoparticles shape
KW - Photocatalytic oxidation
KW - TiO
UR - http://www.scopus.com/inward/record.url?scp=85066734057&partnerID=8YFLogxK
U2 - 10.3390/catal9050447
DO - 10.3390/catal9050447
M3 - Article
AN - SCOPUS:85066734057
SN - 2073-4344
VL - 9
JO - Catalysts
JF - Catalysts
IS - 5
M1 - 447
ER -