Effect of unitary noise on Grover’s quantum search algorithm

Daniel Shapira, Shay Mozes, Ofer Biham

Research output: Contribution to journalArticlepeer-review

Abstract

The effect of unitary noise on the performance of Grover’s quantum search algorithm is studied. This type of noise may result from tiny fluctuations and drift in the parameters of the (quantum) components performing the computation. The resulting operations are still unitary, but not precisely those assumed in the design of the algorithm. Here we focus on the effect of such noise in the Hadamard gate W, which is an essential component in each iteration of the quantum search process. To this end W is replaced by a noisy Hadamard gate U. The parameters of U at each iteration are taken from an arbitrary probability distribution (e.g., a Gaussian distribution) and are characterized by their statistical moments around the parameters of W. For simplicity, we assume that the noise is unbiased and isotropic, namely, all noise variables in the parametrization we use have zero average and the same standard deviation [Formula Presented] The noise terms at different calls to U are assumed to be uncorrelated. For a search space of size [Formula Presented] (where n is the number of qubits used to span this space) it is found that as long as [Formula Presented] the algorithm maintains significant efficiency, while above this noise level its operation is hampered completely. It is also found that below this noise threshold, when the search fails, it is likely to provide a state that differs from the marked state by only a few bits. This feature can be used to search for the marked state by a classical postprocessing, even if the quantum search has failed, thus improving the success rate of the search process.

Original languageEnglish GB
Pages (from-to)17
Number of pages1
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume67
Issue number4
DOIs
StatePublished - 1 Jan 2003
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Effect of unitary noise on Grover’s quantum search algorithm'. Together they form a unique fingerprint.

Cite this