Effect of95241Am(n, γ) reaction branching ratio on fuel cycle and reactor design characteristics

Leonid Golyand, Eugene Shwageraus, Yigal Ronen

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.

Original languageEnglish
Pages (from-to)289-302
Number of pages14
JournalNuclear Science and Engineering
Volume161
Issue number3
DOIs
StatePublished - 1 Jan 2009

ASJC Scopus subject areas

  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Effect of95241Am(n, γ) reaction branching ratio on fuel cycle and reactor design characteristics'. Together they form a unique fingerprint.

Cite this