Effects of α2‐Adrenergic Agonists and Antagonists on Photoreceptor Membrane Currents

Manabu Sakakibara, Carlos Collin, Alan Kuzirian, Daniel L. Alkon, Eliahu Heldman, Shigetaka Naito, Izja Lederhendler

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Abstract: Type B photoreceptors of the nudibranch mollusc Hermissenda crassicornis receive excitatory synaptic potentials (EPSPs) whose frequency is controlled by potential changes of a neighboring cell known as the S optic ganglion cell which is thought to be electrically coupled to the presyn‐aptic source of these EPSPs, the E optic ganglion cell. The frequency of the EPSPs increases when a conditioned stimulus (light) is paired with an unconditioned stimulus (rotation) during acquisition of a Pavlovian conditioned response. The results of the present study are consistent with an adrenergic origin for these EPSPs. Noradrenergic agonists (≥ 100 μM), norepinephrine and clonidine, only slightly depolarize the type B cell but clearly prolong its depolarizing response to light. Serotonin, by contrast, causes hyperpolarization of the type B cell's resting potential as well as after a light step. Clonidine reduces voltage‐dependent outward K+ currents (IA, an early current, Ica2+‐K+, a late Ca2+‐dependent current) that control the type B cell's excitability (and thus its light response and membrane potential). These effects of clonidine are reduced or blocked by the α2‐receptor antagonist, yohimbine (0.5 μM), but not the α1‐blocker, prazosin. The same yohimbine concentration also blocked depolarizing synaptic excitation of the type B cell in response to depolarization of a simultaneously impaled S optic ganglion cell. Histochemical techniques (both the glyoxylic acid method of de la Torre and Surgeon and the formaldehyde‐induced fluorescence or Falck‐Hillarp method) demonstrated the presence of a biogenic amine(s) within a single neuron in each optic ganglion as well as three or four cells within the vicinity of previously identified visual interneurons. No serotonergic neurons were found within the optic ganglion or in proximity to visual interneurons. A clonidine‐like synaptic effect on type B cells, therefore, could amplify conditioning‐specific changes of membrane currents by increasing type B depolarization and possibly, as well, by elevating intracellular second messengers.

Original languageEnglish
Pages (from-to)405-416
Number of pages12
JournalJournal of Neurochemistry
Issue number2
StatePublished - Feb 1987
Externally publishedYes


  • Adrenergic modulation
  • Conditioning
  • Hermissenda
  • I and I‐K

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Effects of α2‐Adrenergic Agonists and Antagonists on Photoreceptor Membrane Currents'. Together they form a unique fingerprint.

Cite this