Effects of temperature and PCO2 and O2 affinity of pigeon blood: Implications for brain O2 supply

B. Pinshow, M. H. Bernstein, Z. Arad

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Bird heads contain paired countercurrent heat exchangers, the ophthalmic retia, which function in brain temperature regulation. Blood, cooled by evaporation from the nasal and buccal mucosa and the ocular surfaces, flows to the venous side of each rete and there gains heat from arterial blood flowing countercurrent to it. The cooled arterial blood then flows to the brain. To ascertain whether characteristics of the blood reaching the cooling surfaces and the retia favor O2 and CO2 exchange, as well as heat exchange, we studied blood affinity in relation to temperature (T) and CO2 tension (Pco2) in six pigeons (Columba livia). O2 tension (PO at half-saturation (P50, Torr) was measured at various combinations of T and PCO2 from 36 to 44°C and 9 to 33 Torr. pH was uncontrolled. O2 half-saturation of hemoglobin (P50) varied according to P50 = 1.049 + 0.573Pco2 - 19.444. We propose that shifts in blood O2 affinity, associated with T and Pco2 at the mucosa and eyes and in the retia, would enhance the brain O2 supply by an exchange of O2 and CO2 between air and blood at moist cephalic surfaces, thereby augmenting O2 and reducing CO2 in the venous return to the retia and diffusion of O2 from veins to arteries in the retia. This mechanism might have particular importance at high altitude; we calculate that at 7,000 m above sea level both O2 saturation and PO2 could double in blood flowing from the retia to the brain.

Original languageEnglish
Pages (from-to)R758-R764
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Issue number6
StatePublished - 1 Jan 1985
Externally publishedYes

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)


Dive into the research topics of 'Effects of temperature and PCO2 and O2 affinity of pigeon blood: Implications for brain O2 supply'. Together they form a unique fingerprint.

Cite this