TY - JOUR
T1 - Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time.
AU - Warshawsky-Livne, Lora
AU - Shinar, David
PY - 2002/1/1
Y1 - 2002/1/1
N2 - PROBLEM: Braking time (BT) is a critical component in safe driving, and various approaches have been applied to minimize it. This study analyzed the components of BT in order to assess the effects of age, gender, vehicle transmission type, and event uncertainty, on its two primary components, perception-reaction time and brake-movement time. METHOD: Perception-reaction time and brake-movement time were measured at the onset of lights for 72 subjects in a simulator. The six experimental conditions were three levels of uncertainty conditions (none, some, and some + false alarms) and two types of transmission (manual and automatic). The 72 subjects, half male and half female, were further divided into three age groups (mean of 23, 30, and 62 years). Each subject had 10 trials in each of the three levels of uncertainty conditions. RESULTS: Transmission type did not significantly affect either perception-reaction time or brake-movement time. Perception-reaction time increased significantly from 0.32 to 0.42 s (P < .05) as uncertainty increased but brake-movement time did not change. Perception-reaction time increased (from 0.35 to 0.43 s) with age but brake-movement time did not change with age. Gender did not affect perception-reaction time but did affect brake-movement time (males 0.19 s vs. females 0.16 s). IMPACT ON INDUSTRY: At 90 km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle-kilometers can contribute to significant savings in lives and damages.
AB - PROBLEM: Braking time (BT) is a critical component in safe driving, and various approaches have been applied to minimize it. This study analyzed the components of BT in order to assess the effects of age, gender, vehicle transmission type, and event uncertainty, on its two primary components, perception-reaction time and brake-movement time. METHOD: Perception-reaction time and brake-movement time were measured at the onset of lights for 72 subjects in a simulator. The six experimental conditions were three levels of uncertainty conditions (none, some, and some + false alarms) and two types of transmission (manual and automatic). The 72 subjects, half male and half female, were further divided into three age groups (mean of 23, 30, and 62 years). Each subject had 10 trials in each of the three levels of uncertainty conditions. RESULTS: Transmission type did not significantly affect either perception-reaction time or brake-movement time. Perception-reaction time increased significantly from 0.32 to 0.42 s (P < .05) as uncertainty increased but brake-movement time did not change. Perception-reaction time increased (from 0.35 to 0.43 s) with age but brake-movement time did not change with age. Gender did not affect perception-reaction time but did affect brake-movement time (males 0.19 s vs. females 0.16 s). IMPACT ON INDUSTRY: At 90 km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle-kilometers can contribute to significant savings in lives and damages.
UR - http://www.scopus.com/inward/record.url?scp=0037085638&partnerID=8YFLogxK
U2 - 10.1016/S0022-4375(02)00006-3
DO - 10.1016/S0022-4375(02)00006-3
M3 - Article
AN - SCOPUS:0037085638
SN - 0022-4375
VL - 33
SP - 117
EP - 128
JO - Journal of Safety Research
JF - Journal of Safety Research
IS - 1
ER -