Efficient and Explicit Balanced Primer Codes

Yeow Meng Chee, Han Mao Kiah, Hengjia Wei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations


To equip DNA-based data storage with random-access capabilities, Yazdi et al. (2018) prepended DNA strands with specially chosen address sequences called primers and provided certain design criteria for these primers. We provide explicit constructions of error-correcting codes that are suitable as primer addresses and equip these constructions with efficient encoding algorithms. Specifically, our constructions take cyclic or linear codes as inputs and produce sets of primers with similar error-correcting capabilities. Using certain classes of BCH codes, we obtain infinite families of primer sets of length n, minimum distance d with (d + 1) log4 n + O(1) redundant symbols. Our techniques involve reversible cyclic codes (1964), an encoding method of Tavares et al. (1971) and Knuth's balancing technique (1986). In our investigation, we also construct efficient and explicit binary balanced error-correcting codes.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Number of pages5
ISBN (Electronic)9781538692912
StatePublished - 1 Jul 2019
Externally publishedYes
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Conference2019 IEEE International Symposium on Information Theory, ISIT 2019

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Efficient and Explicit Balanced Primer Codes'. Together they form a unique fingerprint.

Cite this