Abstract
Many companies now use crowdsourcing to leverage external as well as internal crowds to perform specialized work, and so methods of improving efficiency are critical. Tasks in crowdsourcing systems with specialized work have multiple steps and each step requires multiple skills. Steps may have different flexibilities in terms of obtaining service from one or multiple agents due to varying levels of dependency among parts of steps. Steps of a task may have precedence constraints among them. Moreover, there are variations in loads of different types of tasks requiring different skill sets and availabilities of agents with different skill sets. Considering these constraints together necessitate the design of novel schemes to allocate steps to agents. In addition, large crowdsourcing systems require allocation schemes that are simple, fast, decentralized, and offer customers (task requesters) the freedom to choose agents. In this paper, we study the performance limits of such crowdsourcing systems and propose efficient allocation schemes that provably meet the performance limits under these additional requirements. We demonstrate our algorithms on data from a crowdsourcing platform run by a nonprofit company and show significant improvements over current practice.
Original language | English |
---|---|
Pages (from-to) | 879-892 |
Number of pages | 14 |
Journal | IEEE/ACM Transactions on Networking |
Volume | 26 |
Issue number | 2 |
DOIs | |
State | Published - 1 Apr 2018 |
Externally published | Yes |
Keywords
- Crowdsourcing
- human resource management
- scheduling algorithms
ASJC Scopus subject areas
- Software
- Computer Science Applications
- Computer Networks and Communications
- Electrical and Electronic Engineering