Efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface

L. W. Snyman, M. Du Plessis, E. Seevinck, H. Aharoni

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

A silicon light emitting device was designed and realized utilizing a standard 2-μm industrial CMOS technology design and processing procedure. The device and its associated driving circuitry were integrated in a CMOS integrated circuit and can interface with a multimode optical fiber. The device delivers 8 nW of optical power (450-850 nm wavelength) per 20 μm diameter of chip area at 4.0 V and 5 mA. The device emits light by means of a surface assisted Zener breakdown process that occurs laterally between concentrically arranged highly doped n+ rings and a p+ centroid, which are all coplanarly arranged with an optically transparent Si-SiO2 interface. Theoretical and experimental determinations with capacitances and series resistances indicate that the device has an intrinsic high-frequency operating capability into the near gigahertz range.

Original languageEnglish
Pages (from-to)614-617
Number of pages4
JournalIEEE Electron Device Letters
Volume20
Issue number12
DOIs
StatePublished - 1 Dec 1999

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface'. Together they form a unique fingerprint.

Cite this