Abstract
Root nodule-like LaPO4/CdS hierarchical heterostructures were constructed via in-situ growth of LaPO4 microspheres on the surface of CdS nanorods to remarkably enhance CO2 reduction under visible light. The self-assembly strategy allows intimate interfacial contact between LaPO4 and CdS, greatly facilitating the separation and transfer of photo-generated charge, which lifetime is increased from 18.6 ns to 48.5 ns. Benefiting from the synergistic effect of the enhanced CO2 adsorption and promoted visible light absorption, the optimized LaPO4/CdS photocatalyst shows excellent CO2 reduction performance with CO generation rate of 960 μmol⋅h−1⋅g−1, which is 3.9 times greater than the pure CdS nanorods. Moreover, considerable stability can be observed in LaPO4/CdS heterostructure photocatalysts. The current work provides a simple self-assembly approach to build 3D-1D semiconductor composites for artificial photosynthesis.
Original language | English |
---|---|
Article number | 144379 |
Journal | Applied Surface Science |
Volume | 504 |
DOIs | |
State | Published - 28 Feb 2020 |
Externally published | Yes |
Keywords
- CdS nanorods
- Heterostructures
- LaPO microspheres
- Photocatalysis
- Self-assembly
ASJC Scopus subject areas
- General Chemistry
- Condensed Matter Physics
- General Physics and Astronomy
- Surfaces and Interfaces
- Surfaces, Coatings and Films