eIF3 Complexes and the eIF3e Subunit in Arabidopsis Development and Translation Initiation: Final Scientific Report - BARD Project Number: IS-3901-05

A. von Arnim, Daniel Chamovitz

Research output: Book/ReportReportpeer-review


The original working hypothesis of our proposal was that The “e” subunit of eIF3 has multiple functions from both within the nucleus and in the cytoplasm. Within this model, we further hypothesized that the “e” subunit of eIF3 functions in translation as a repressor. We proposed to test these hypotheses along the following specific aims: 1) Determine the subcellular localization of the interaction between eIF3e and other eIF3 subunits, or the COP9 signalosome. 2) Elucidate the biological significance of the varied subcellular localizations of eIF3e through generating Arabidopsis eIF3e alleles with altered subcellular localization. 3.) Purify different eIF3e complexes by tandem affinity purification (TAP). 4) Study the role of eIF3e in translational repression using both in vitro and in planta assays. eIF3 is an evolutionarily ancient and essential component of the translational apparatus in both the plant and animal kingdoms. eIF3 is the largest, and in some ways the most mysterious, of the translation factors. It is a multi-subunit protein complex that has a structural/scaffolding role in translation initiation. However, despite years of study, only recently have differential roles for eIF3 in the developmental regulation of translation been experimentally grounded. Furthermore, the roles of individual eIF3 subunits are not clear, and indeed some, such as the “e” subunit may have roles independent of translation initiation. The original three goals of the proposal were technically hampered by a finding that became evident during the course of the research – Any attempt to make transgenic plants that expressed eIF3e wt or eIF3e variants resulted in seedling lethality or seed inviability. That is, it was impossible to regenerate any transgenic plants that expressed eIF3e. We did manage to generate plants that expressed an inducible form of eIF3e. This also eventually led to lethality, but was very useful in elucidating the 4th goal of the research (Yahalom et al., 2008), where we showed, for the first time in any organism, that eIF3e has a repressory role in translation. In attempt to solve the expression problems, we also tried expression from the native promoter, and as such analyzed this promoter in transgenic plants (Epel, 2008). As such, several additional avenues were pursued. 1) We investigated protein-protein interactions of eIF3e (Paz-Aviram et al., 2008). 2) The results from goal #4 led to a novel hypothesis that the interaction of eIF3e and the CSN meets at the control of protein degradation of nascent proteins. In other words, that the block in translation seen in csn and eIF3e-overexpressing plants (Yahalom et al., 2008) leads to proteasome stress. Indeed we showed that both over expression of eIF3e and the csn mutants lead to the unfolded protein response. 3) We further investigated the role of an additional eIF3 subunit, eIF3h, in transalational regulation in the apical meristem (Zhou et al., 2009). Epel, A. (2008). Characterization of eIF3e in the model plant Arabidopsis thaliana. In Plant Sciences (Tel Aviv, Tel Aviv University). Paz-Aviram, T., Yahalom, A., and Chamovitz, D.A. (2008). Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome. Plant Signaling and Behaviour 3, 409-411. Yahalom, A., Kim, T.H., Roy, B., Singer, R., von Arnim, A.G., and Chamovitz, D.A. (2008). Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J 53, 300-311. Zhou, F., Dunlap, J.R., and von Arnim, A.G. The translation initiation factor subunit eIF3h is .1 involved in Arabidopsis shoot apical meristem maintenance and auxin response. (submitted to Development).
Original languageEnglish
PublisherUnited States Department of Agriculture
StatePublished - 2009
Externally publishedYes

Publication series

NameUnited States-Israel Binational Agricultural Research and Development Fund Research Project


Dive into the research topics of 'eIF3 Complexes and the eIF3e Subunit in Arabidopsis Development and Translation Initiation: Final Scientific Report - BARD Project Number: IS-3901-05'. Together they form a unique fingerprint.

Cite this