TY - JOUR
T1 - Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets
AU - Chitara, Basant
AU - Ya'Akobovitz, Assaf
N1 - Publisher Copyright:
© 2018 The Royal Society of Chemistry.
PY - 2018/7/21
Y1 - 2018/7/21
N2 - Gallium sulphide (GaS), gallium selenide (GaSe), and gallium telluride (GaTe), belonging to the group-III monochalcogenide family, have shown promising optoelectronic performance over graphene and monolayer molybdenum disulphide (MoS2). However, to date, the mechanical properties of these materials have not been investigated, which hinders their utilisation in flexible electronics and optomechanics. Here, we characterize the elastic properties and breaking strengths of suspended two-dimensional (2D) nanosheets of GaS, GaSe, and GaTe, using atomic force microscopy. The 2D Young's modulus values of ∼10 nm thick GaS, GaSe, and GaTe were found to be 1732 ± 154 N m-1, 819 ± 127 N m-1, and 246 ± 160 N m-1, respectively, corresponding to the three-dimensional (3D) Young's modulus values of 173 ± 15 GPa, 81.9 ± 12.7 GPa, and 24.6 ± 16 GPa, respectively. The pre-tension values of these nanosheets were estimated to be 0.34 ± 0.12 N m-1, 0.14 ± 0.04 N m-1, and 0.15 ± 0.03 N m-1 for GaS, GaSe, and GaTe, respectively. GaS nanosheets exhibited the highest Young's modulus (173 GPa) among these nanosheets, which is comparable to that of WS2 and WSe2. A failure characteristic study over these group-III monochalcogenides revealed that these materials can withstand stresses of up to 8 GPa and a maximal strain of 7% before breaking. Altogether, our findings indicate that GaS, GaSe, and GaTe are attractive candidates for use in stretchable electronic applications and in future optomechanical devices.
AB - Gallium sulphide (GaS), gallium selenide (GaSe), and gallium telluride (GaTe), belonging to the group-III monochalcogenide family, have shown promising optoelectronic performance over graphene and monolayer molybdenum disulphide (MoS2). However, to date, the mechanical properties of these materials have not been investigated, which hinders their utilisation in flexible electronics and optomechanics. Here, we characterize the elastic properties and breaking strengths of suspended two-dimensional (2D) nanosheets of GaS, GaSe, and GaTe, using atomic force microscopy. The 2D Young's modulus values of ∼10 nm thick GaS, GaSe, and GaTe were found to be 1732 ± 154 N m-1, 819 ± 127 N m-1, and 246 ± 160 N m-1, respectively, corresponding to the three-dimensional (3D) Young's modulus values of 173 ± 15 GPa, 81.9 ± 12.7 GPa, and 24.6 ± 16 GPa, respectively. The pre-tension values of these nanosheets were estimated to be 0.34 ± 0.12 N m-1, 0.14 ± 0.04 N m-1, and 0.15 ± 0.03 N m-1 for GaS, GaSe, and GaTe, respectively. GaS nanosheets exhibited the highest Young's modulus (173 GPa) among these nanosheets, which is comparable to that of WS2 and WSe2. A failure characteristic study over these group-III monochalcogenides revealed that these materials can withstand stresses of up to 8 GPa and a maximal strain of 7% before breaking. Altogether, our findings indicate that GaS, GaSe, and GaTe are attractive candidates for use in stretchable electronic applications and in future optomechanical devices.
UR - http://www.scopus.com/inward/record.url?scp=85050022033&partnerID=8YFLogxK
U2 - 10.1039/c8nr01065j
DO - 10.1039/c8nr01065j
M3 - Article
AN - SCOPUS:85050022033
SN - 2040-3364
VL - 10
SP - 13022
EP - 13027
JO - Nanoscale
JF - Nanoscale
IS - 27
ER -