Electric-field control of single-molecule tautomerization

Shai Mangel, Maxim Skripnik, Katharina Polyudov, Christian Dette, Tobias Wollandt, Paul Punke, Dongzhe Li, Roberto Urcuyo, Fabian Pauly, Soon Jung Jung, Klaus Kern

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The electric field is an important parameter to vary in a single-molecule experiment, because it can directly affect the charge distribution around the molecule. Yet, performing such an experiment with a well-defined electric field for a model chemical reaction at an interface has proven to be extremely difficult. Here, by combining a graphene field-effect transistor and a gate-tunable scanning tunneling microscope (STM), we reveal how this strategy enables the intramolecular H atom transfer of a metal-free macrocycle to be controlled with an external field. Experiments and theory both elucidate how the energetic barrier to tautomerization decreases with increasing electric field. The consistency between the two results demonstrates the potential in using electric fields to engineer molecular switching mechanisms that are ubiquitous in nanoscale electronic devices.

Original languageEnglish
Pages (from-to)6370-6375
Number of pages6
JournalPhysical Chemistry Chemical Physics
Volume22
Issue number11
DOIs
StatePublished - 21 Mar 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Electric-field control of single-molecule tautomerization'. Together they form a unique fingerprint.

Cite this