TY - JOUR
T1 - Electrochemically-Initiated RAFT Synthesis of Low Dispersity Multiblock Copolymers by Seeded Emulsion Polymerization
AU - Clothier, Glenn K.K.
AU - Guimarães, Thiago R.
AU - Strover, Lisa T.
AU - Zetterlund, Per B.
AU - Moad, Graeme
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/3/21
Y1 - 2023/3/21
N2 - We describe electrochemically initiated emulsion polymerization with reversible addition-fragmentation chain transfer (eRAFT) to form well-defined multiblock copolymers with low molar mass dispersity. We demonstrate the utility of our emulsion eRAFT process with the synthesis of low dispersity multiblock copolymers by seeded RAFT emulsion polymerization at ambient temperature (∼30 °C). Thus, a triblock, poly(butyl methacrylate)-block-polystyrene-block-poly(4-methylstyrene) [PBMA-b-PSt-b-PMS], and a tetrablock, poly(butyl methacrylate)-block-polystyrene-block-poly(styrene-stat-butyl acrylate)-block-polystyrene [PBMA-b-PSt-b-P(BA-stat-St)-b-PSt], were synthesized as free-flowing, colloidally stable latexes commencing with a surfactant-free poly(butyl methacrylate) macroRAFT agent seed latex. A straightforward sequential addition strategy with no intermediate purification steps was able to be employed due to the high monomer conversions achieved in each step. The method takes full advantage of compartmentalization phenomena and the nanoreactor concept described in previous work to achieve the predicted molar mass, low molar mass dispersity (Đ ∼ 1.1-1.2), incrementing particle size (Zav = 100-115 nm), and low particle size dispersity (PDI ∼ 0.02) for each generation of the multiblocks.
AB - We describe electrochemically initiated emulsion polymerization with reversible addition-fragmentation chain transfer (eRAFT) to form well-defined multiblock copolymers with low molar mass dispersity. We demonstrate the utility of our emulsion eRAFT process with the synthesis of low dispersity multiblock copolymers by seeded RAFT emulsion polymerization at ambient temperature (∼30 °C). Thus, a triblock, poly(butyl methacrylate)-block-polystyrene-block-poly(4-methylstyrene) [PBMA-b-PSt-b-PMS], and a tetrablock, poly(butyl methacrylate)-block-polystyrene-block-poly(styrene-stat-butyl acrylate)-block-polystyrene [PBMA-b-PSt-b-P(BA-stat-St)-b-PSt], were synthesized as free-flowing, colloidally stable latexes commencing with a surfactant-free poly(butyl methacrylate) macroRAFT agent seed latex. A straightforward sequential addition strategy with no intermediate purification steps was able to be employed due to the high monomer conversions achieved in each step. The method takes full advantage of compartmentalization phenomena and the nanoreactor concept described in previous work to achieve the predicted molar mass, low molar mass dispersity (Đ ∼ 1.1-1.2), incrementing particle size (Zav = 100-115 nm), and low particle size dispersity (PDI ∼ 0.02) for each generation of the multiblocks.
UR - http://www.scopus.com/inward/record.url?scp=85148871064&partnerID=8YFLogxK
U2 - 10.1021/acsmacrolett.3c00021
DO - 10.1021/acsmacrolett.3c00021
M3 - Article
C2 - 36802531
AN - SCOPUS:85148871064
SN - 2161-1653
VL - 12
SP - 331
EP - 337
JO - ACS Macro Letters
JF - ACS Macro Letters
IS - 3
ER -