TY - JOUR
T1 - Electron Flow Characterization of Charge Transfer for Carbonic Acid to Strong Base Proton Transfer in Aqueous Solution
AU - Kiefer, Philip M.
AU - Daschakraborty, Snehasis
AU - Pines, Dina
AU - Pines, Ehud
AU - Hynes, James T.
N1 - Publisher Copyright:
© Authors 2021
PY - 2021/10/21
Y1 - 2021/10/21
N2 - Protonation of the strong base methylamine CH3NH2 by carbonic acid H2CO3 in aqueous solution, HOCOOH···NH2CH3 → HOCOO-···+HNH2CH3, has been previously studied (J. Phys. Chem. B 2016, 109, 2271-2280; J. Phys. Chem. B 2016, 109, 2281-2290) via Car-Parinnello molecular dynamics. This proton transfer (PT) reaction within a hydrogen (H)-bonded complex was found to be barrierless and very rapid, with key reaction coordinates comprising the proton coordinate, the H-bond separation RON, and a solvent coordinate, reflecting the water solvent rearrangement involved in the neutral to ion pair conversion. In the present work, the reaction's charge flow aspects are analyzed in detail, especially a description via Mulliken charge transfer for PT (MCTPT). A natural bond orbital analysis and some extensions of them are employed for the complex's electronic structure during the reaction trajectories. Results demonstrate that consistent with the MCTPT picture, the charge transfer (CT) occurs from a methylamine base nonbonding orbital to a carbonic acid antibonding orbital. A complementary MCTPT reaction product perspective of CT from the antibonding orbital of the HN+ moiety to the nonbonding orbital of the oxygen in the H-bond complex is also presented. σOH and σHN+ bond order expressions show this CT to occur within the H-bond OHN triad, an aspect key for simultaneous bond-breaking and -forming in the PT reaction.
AB - Protonation of the strong base methylamine CH3NH2 by carbonic acid H2CO3 in aqueous solution, HOCOOH···NH2CH3 → HOCOO-···+HNH2CH3, has been previously studied (J. Phys. Chem. B 2016, 109, 2271-2280; J. Phys. Chem. B 2016, 109, 2281-2290) via Car-Parinnello molecular dynamics. This proton transfer (PT) reaction within a hydrogen (H)-bonded complex was found to be barrierless and very rapid, with key reaction coordinates comprising the proton coordinate, the H-bond separation RON, and a solvent coordinate, reflecting the water solvent rearrangement involved in the neutral to ion pair conversion. In the present work, the reaction's charge flow aspects are analyzed in detail, especially a description via Mulliken charge transfer for PT (MCTPT). A natural bond orbital analysis and some extensions of them are employed for the complex's electronic structure during the reaction trajectories. Results demonstrate that consistent with the MCTPT picture, the charge transfer (CT) occurs from a methylamine base nonbonding orbital to a carbonic acid antibonding orbital. A complementary MCTPT reaction product perspective of CT from the antibonding orbital of the HN+ moiety to the nonbonding orbital of the oxygen in the H-bond complex is also presented. σOH and σHN+ bond order expressions show this CT to occur within the H-bond OHN triad, an aspect key for simultaneous bond-breaking and -forming in the PT reaction.
UR - http://www.scopus.com/inward/record.url?scp=85117474383&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.1c05824
DO - 10.1021/acs.jpcb.1c05824
M3 - Article
C2 - 34623157
AN - SCOPUS:85117474383
SN - 1520-6106
VL - 125
SP - 11473
EP - 11490
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 41
ER -