TY - JOUR
T1 - Electrophoretic deposition of single-source precursors as a general approach for the formation of hybrid nanorod array heterostructures
AU - Volokh, Michael
AU - Diab, Mahmud
AU - Flomin, Kobi
AU - Mokari, Taleb
N1 - Funding Information:
This work was supported by the European Research Council (Starting Grant, Project No. 278779). M.V. thanks the Merage Foundation for financial support. The authors would like to thank Dr. Vladimir Ezersky for analytical and high-resolution TEM and Dr. Anna Milionshchik for TGA.
Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Hypothesis Subjecting colloids to electric fields often results in (electrophoretic) deposition on conductive substrates. Dispersing a single-source precursor (SSP) of choice in an appropriate solvent, should allow its deposition on different substrates. The SSP-solvent interaction might play a role in the deposition (e.g., direction, rate, coverage). After thermal decomposition, the SSPs convert to the designed material, thus allowing formation of thin films or hybrid nanostructures. Experiments Electrophoretic deposition (EPD) was applied on two representative SSPs in different solvents. These SSPs were deposited onto substrates covered with vertically-aligned ZnO nanorod (NR) arrays. After thermal decomposition, hybrid nanostructures were obtained and their morphology and interfaces were characterized by electron microscopy, X-ray diffraction, UV–vis, and electrochemistry. Findings Tuning the organic dispersant-SSP interaction allows control over the final film morphology, which can result in coating and filling of NRs with metal-sulfides or metal-oxides after thermal decomposition of the SSP. These findings introduce a new facile method for a fast and large-scale uniform deposition of different (nanostructured) thin film semiconductors on a variety of substrates. We discuss the influence of the dispersant medium on the deposition of metallo-organic SSPs. As an example, the formed ZnO–CdS interface supports charge transfer upon illumination.
AB - Hypothesis Subjecting colloids to electric fields often results in (electrophoretic) deposition on conductive substrates. Dispersing a single-source precursor (SSP) of choice in an appropriate solvent, should allow its deposition on different substrates. The SSP-solvent interaction might play a role in the deposition (e.g., direction, rate, coverage). After thermal decomposition, the SSPs convert to the designed material, thus allowing formation of thin films or hybrid nanostructures. Experiments Electrophoretic deposition (EPD) was applied on two representative SSPs in different solvents. These SSPs were deposited onto substrates covered with vertically-aligned ZnO nanorod (NR) arrays. After thermal decomposition, hybrid nanostructures were obtained and their morphology and interfaces were characterized by electron microscopy, X-ray diffraction, UV–vis, and electrochemistry. Findings Tuning the organic dispersant-SSP interaction allows control over the final film morphology, which can result in coating and filling of NRs with metal-sulfides or metal-oxides after thermal decomposition of the SSP. These findings introduce a new facile method for a fast and large-scale uniform deposition of different (nanostructured) thin film semiconductors on a variety of substrates. We discuss the influence of the dispersant medium on the deposition of metallo-organic SSPs. As an example, the formed ZnO–CdS interface supports charge transfer upon illumination.
KW - Electrophoretic deposition
KW - Heterostructure
KW - Hybrid nanostructure
KW - Metallo-organic single-source precursor
KW - Single-source precursor
UR - http://www.scopus.com/inward/record.url?scp=85040312392&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2018.01.030
DO - 10.1016/j.jcis.2018.01.030
M3 - Article
AN - SCOPUS:85040312392
SN - 0021-9797
VL - 515
SP - 221
EP - 231
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -