Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications

Ie Mei Bhattacharyya, Gil Shalev

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


Biosensors based on field-effect devices (bioFETs) offer numerous advantages over current technologies and therefore have attracted immense research over the decades. However, short Debye screening length in highly ionic physiological solutions remains the main obstacle for bioFET realization. This challenge becomes considerably more acute at the electrolyte-oxide interface of the sensing area due to high ion concentration induced by the charged amphoteric sites, which prohibits any attempt to employ the field-effect mechanism to "sense" any charged biomolecules. In this work, we present an electrostatic approach by which the double layer (DL) excess ion concentration is removed, thus forcing the DL ion concentration to match the bulk concentration, which subsequently forces bulk screening length at the DL, thereby "exposing" target biomolecules to the underlying bioFET. To this end, we employ local tunable surface electric fields, introduced to the DL using surface passivated-metal electrodes. We examine numerically and analytically the effect of these electric fields on the DL ion distribution. We also numerically demonstrate the feasibility of the proposed approach for a fully depleted silicon-on-insulator based bioFET and show how the threshold voltage shift induced by the presence of target molecules increases by almost two orders of magnitude upon the removal of the surface excess ion population.

Original languageEnglish
Pages (from-to)154-161
Number of pages8
JournalACS Sensors
Issue number1
StatePublished - 24 Jan 2020


  • Debye screening length
  • bioFET
  • field-effect
  • fully depleted silicon-on-insulator
  • immunoFET

ASJC Scopus subject areas

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications'. Together they form a unique fingerprint.

Cite this