TY - JOUR
T1 - Elevated temperature-driven coordinative reconstruction of an unsaturated single-Ni-atom structure with low valency on a polymer-derived matrix for the electrolytic oxygen evolution reaction
AU - Patil, Rahul
AU - Rajput, Anubha
AU - Matsagar, Babasaheb M.
AU - Chen, Norman C.R.
AU - Ujihara, Masaki
AU - Salunkhe, Rahul R.
AU - Yadav, Praveen
AU - Wu, Kevin C.W.
AU - Chakraborty, Biswarup
AU - Dutta, Saikat
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/3/6
Y1 - 2024/3/6
N2 - A high-temperature pyrolysis-controlled coordination reconstruction resulted in a single-Ni-atom structure with a Ni-Nx-C structural unit (x = N atom coordinated to Ni). Pyrolysis of Ni-phen@ZIF-8-RF at 700 °C resulted in NiNP-NC-700 with predominantly Ni nanoparticles. Upon elevating the pyrolysis temperature from 700 to 900 °C, a coordination reconstruction offers Ni-Nx atomic sites in NiSA-NC-900. A combined investigation with X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and soft X-ray L3-edge spectroscopy suggests the stabilization of low-valent Niδ+ (0 < δ < 2) in the Ni-N-C structural units. The oxygen evolution reaction (OER) is a key process during water splitting in fuel cells. However, OER is a thermodynamically uphill reaction with multi-step proton-coupled electron transfer and sluggish kinetics, due to which there is a need for a catalyst that can lower the OER overpotentials. The adsorption energy of a multi-step reaction on a single metal atom with coordination unsaturation tunes the adsorption of each oxygenated intermediate. The promising OER activity of the NiSA-NC-900/NF anode on nickel foam was followed by the overall water splitting (OWS) using using NiSA-NC-900/NF as anode and Pt coil as the cathodic counterpart, wherein a cell potential of 1.75 V at 10 mA cm−2 was achieved. The cell potential recorded with Pt(−)/(+)NiSA-NC-900/NF was much lower than that obtained for other cells, i.e., Pt(−)/NF and NF(−)/(+)NF, which enhances the potentials of low-valent NiSAs for insightful understanding of the OER. At a constant applied potential of 1.61 V (vs. RHE) for 12 h, an small increase in current for initial 0.6 h followed by a constant current depicts the fair stability of catalyst for 12 h. Our results offer an insightful angle into the OER with a coordinatively reconstructed single-Ni-atom structure at lower valency (<+2).
AB - A high-temperature pyrolysis-controlled coordination reconstruction resulted in a single-Ni-atom structure with a Ni-Nx-C structural unit (x = N atom coordinated to Ni). Pyrolysis of Ni-phen@ZIF-8-RF at 700 °C resulted in NiNP-NC-700 with predominantly Ni nanoparticles. Upon elevating the pyrolysis temperature from 700 to 900 °C, a coordination reconstruction offers Ni-Nx atomic sites in NiSA-NC-900. A combined investigation with X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and soft X-ray L3-edge spectroscopy suggests the stabilization of low-valent Niδ+ (0 < δ < 2) in the Ni-N-C structural units. The oxygen evolution reaction (OER) is a key process during water splitting in fuel cells. However, OER is a thermodynamically uphill reaction with multi-step proton-coupled electron transfer and sluggish kinetics, due to which there is a need for a catalyst that can lower the OER overpotentials. The adsorption energy of a multi-step reaction on a single metal atom with coordination unsaturation tunes the adsorption of each oxygenated intermediate. The promising OER activity of the NiSA-NC-900/NF anode on nickel foam was followed by the overall water splitting (OWS) using using NiSA-NC-900/NF as anode and Pt coil as the cathodic counterpart, wherein a cell potential of 1.75 V at 10 mA cm−2 was achieved. The cell potential recorded with Pt(−)/(+)NiSA-NC-900/NF was much lower than that obtained for other cells, i.e., Pt(−)/NF and NF(−)/(+)NF, which enhances the potentials of low-valent NiSAs for insightful understanding of the OER. At a constant applied potential of 1.61 V (vs. RHE) for 12 h, an small increase in current for initial 0.6 h followed by a constant current depicts the fair stability of catalyst for 12 h. Our results offer an insightful angle into the OER with a coordinatively reconstructed single-Ni-atom structure at lower valency (<+2).
UR - http://www.scopus.com/inward/record.url?scp=85188719258&partnerID=8YFLogxK
U2 - 10.1039/d4nr00337c
DO - 10.1039/d4nr00337c
M3 - Article
C2 - 38511345
AN - SCOPUS:85188719258
SN - 2040-3364
VL - 16
SP - 7467
EP - 7479
JO - Nanoscale
JF - Nanoscale
IS - 15
ER -