Abstract
A particle that is immersed in a uniform temperature bath performs Brownian diffusion, as discussed by Einstein. But Sinai has realized that in a 'random environment' the diffusion is suppressed. Follow-up works have pointed out that in the presence of bias f there are delocalization and sliding transitions, with threshold value f c that depends on the disorder strength. We discuss in a critical way the emergence of Sinai physics for both passive and active Brownian particles. Tight-binding and Fokker-Planck versions of the model are addressed on equal footing. We assume that the transition rates between sites are enhanced either due to a driving mechanism or due to self-propulsion mechanism that are induced by an irradiation source. Consequently, counter intuitively, the dynamics becomes sub-diffusive and the relaxation modes become over-damped. For a finite system, spontaneous delocalization may arise, due to residual bias that is induced by the irradiation.
Original language | English |
---|---|
Article number | 063026 |
Journal | New Journal of Physics |
Volume | 24 |
Issue number | 6 |
DOIs | |
State | Published - 1 Jun 2022 |
Keywords
- Sinai model
- active particles
- localization
- non-Hermitian
- rate equations
- sliding transition
ASJC Scopus subject areas
- General Physics and Astronomy