TY - JOUR
T1 - Emission channels from perturbed quantum black holes
AU - Brustein, Ram
AU - Sherf, Yotam
N1 - Publisher Copyright:
© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/" Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP.
PY - 2019/12/2
Y1 - 2019/12/2
N2 - We calculate the emission of gravitational waves, gravitons, photons, and neutrinos from a perturbed Schwarzschild black hole (BH). The perturbation can be due to either classical or quantum sources and therefore the injected energy can be either positive or negative. The emission can be classical in nature, as in the case of gravitational waves, or of quantum nature, for gravitons and the additional fields. We first set up the theoretical framework for calculating the emission by treating the case of a minimally coupled scalar field and then present the results for the other fields. We perform the calculations in the horizon-locking gauge in which the BH horizon is deformed, following similar calculations of tidal deformations of BH horizons. The classical emission can be interpreted as due to a partial exposure of a nonempty BH interior, while the quantum emission can be interpreted as an increased Hawking radiation flux due to the partial exposure of the BH interior. The degree of exposure of the BH interior is proportional to the magnitude of the injected null energy.
AB - We calculate the emission of gravitational waves, gravitons, photons, and neutrinos from a perturbed Schwarzschild black hole (BH). The perturbation can be due to either classical or quantum sources and therefore the injected energy can be either positive or negative. The emission can be classical in nature, as in the case of gravitational waves, or of quantum nature, for gravitons and the additional fields. We first set up the theoretical framework for calculating the emission by treating the case of a minimally coupled scalar field and then present the results for the other fields. We perform the calculations in the horizon-locking gauge in which the BH horizon is deformed, following similar calculations of tidal deformations of BH horizons. The classical emission can be interpreted as due to a partial exposure of a nonempty BH interior, while the quantum emission can be interpreted as an increased Hawking radiation flux due to the partial exposure of the BH interior. The degree of exposure of the BH interior is proportional to the magnitude of the injected null energy.
UR - http://www.scopus.com/inward/record.url?scp=85076721449&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.124005
DO - 10.1103/PhysRevD.100.124005
M3 - Article
AN - SCOPUS:85076721449
SN - 2470-0010
VL - 100
JO - Physical Review D
JF - Physical Review D
IS - 12
M1 - 124005
ER -