Encapsulation of Cu-doped TiO2 nanocomposites with the understanding of weak photocatalytic properties for sunscreen applications

Jyoti Bansal, Sanjay Kumar Swami, Rana Tabassum, Shailesh Narain Sharma, Aurangzeb Khurram Hafiz

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


We report the fabrication and characterization of varying concentration (x) of copper (Cu)-doped TiO2 nanocomposites [Cu(x)TiO2(1-x)] exploring the photocatalytic properties for sunscreen applications. The Cu-doped TiO2 nanocomposite [Cu(x)TiO2(1-x)] has been synthesized by the low-temperature lab-scale sol-gel hydrothermal method. The concentration of Cu in TiO2 has been chosen as 1%, 2%, 3%, and 4% by weight. With varying concentrations of [Cu(x)TiO2(1-x)], the structural and morphological properties are obtained using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of optical properties for varying concentrations of Cu2+ ions in TiO2 has been studied using Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy. Further, by exploring the photocatalytic properties of fabricated [Cu(x)TiO2(1-x)] has been utilized for sunscreen applications. The concept of sunscreen application of Cu-doped TiO2 can be viewed from the fact that the bare TiO2 generates free radicals that can raise the risk of harmful effects on the skin. Our aim is to synthesize the nontoxic material which can either stop or slow the process of generation of free radicals under sun exposure. In the sun exposure, the risk of free radicals produces by pristine TiO2 can be reduced by doping of copper with titania. We have been observed that [Cu(x)TiO2(1-x)] with x equaling 4% (rutile phase) displays the most effective UV-blocking property with weak photocatalytic activity and is found to be better for sunscreen application. Therefore, Cu-doped TiO2 nanocomposite maintains all the properties of TiO2 at nanoscale as well as improves the concerning property of the cosmetic industry.

Original languageEnglish
Pages (from-to)364-374
Number of pages11
JournalJournal of Dispersion Science and Technology
Issue number3
StatePublished - 1 Jan 2022
Externally publishedYes


  • Doping
  • TiO
  • copper
  • cosmetics
  • nanoparticles
  • photocatalysis
  • sunscreen

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Polymers and Plastics


Dive into the research topics of 'Encapsulation of Cu-doped TiO2 nanocomposites with the understanding of weak photocatalytic properties for sunscreen applications'. Together they form a unique fingerprint.

Cite this