TY - GEN
T1 - Energy dispersive synchrotron diffraction for in-situ analyses of hydrogen behavior in steels
AU - Kannengiesser, Thomas
AU - Dabah, Eitan
PY - 2013/1/1
Y1 - 2013/1/1
N2 - The extent of hydrogen embrittlement phenomenon is dependent on the interaction of hydrogen with the material i.e. diffusion behavior, lattice distortions, phase transformations and residual stresses developments. For the better understanding of the hydrogen interaction with the metal, possibilities of performing in-situ observations of the mentioned factors has to be accomplished. The EDDI (Energy Dispersive Diffraction) beamline at the BESSY II facility in Berlin provides this possibility and was used in order to investigate the aspects of this phenomenon in in-situ scale. The energy dispersive method entails a synchrotron X-ray white beam with a wide energy range (20-120 keV) which allows a fixed position of the sample and the detector, and combined with the high photons flux it allows a very short measurement time for obtaining a full scale X-Ray Diffraction patterns. In this contribution, the successful usage of high energy X-rays, applied for the first time for hydrogen behavior observations, provided the ability for evaluating in-situ the hydrogen diffusion behavior and the hydrogen interaction with stresses fields in the material. Steel samples were charged with hydrogen and examined by Synchrotron radiation. Two different methods were used in this research; the first is diffusible hydrogen concentration evaluation extracted from the lattice distortions, i.e. changes of the lattice parameter. The second is calculation of the residual stresses present in the sample and the interaction of hydrogen with them, using the known sin2ψ method.
AB - The extent of hydrogen embrittlement phenomenon is dependent on the interaction of hydrogen with the material i.e. diffusion behavior, lattice distortions, phase transformations and residual stresses developments. For the better understanding of the hydrogen interaction with the metal, possibilities of performing in-situ observations of the mentioned factors has to be accomplished. The EDDI (Energy Dispersive Diffraction) beamline at the BESSY II facility in Berlin provides this possibility and was used in order to investigate the aspects of this phenomenon in in-situ scale. The energy dispersive method entails a synchrotron X-ray white beam with a wide energy range (20-120 keV) which allows a fixed position of the sample and the detector, and combined with the high photons flux it allows a very short measurement time for obtaining a full scale X-Ray Diffraction patterns. In this contribution, the successful usage of high energy X-rays, applied for the first time for hydrogen behavior observations, provided the ability for evaluating in-situ the hydrogen diffusion behavior and the hydrogen interaction with stresses fields in the material. Steel samples were charged with hydrogen and examined by Synchrotron radiation. Two different methods were used in this research; the first is diffusible hydrogen concentration evaluation extracted from the lattice distortions, i.e. changes of the lattice parameter. The second is calculation of the residual stresses present in the sample and the interaction of hydrogen with them, using the known sin2ψ method.
KW - Energy dispersive diffraction
KW - Hydrogen diffusion
KW - Hydrogen embrittlement
KW - Residual stresses
UR - http://www.scopus.com/inward/record.url?scp=84903942690&partnerID=8YFLogxK
U2 - 10.1002/9781118792148.ch431
DO - 10.1002/9781118792148.ch431
M3 - Conference contribution
AN - SCOPUS:84903942690
SN - 9781632660008
T3 - 8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
SP - 3481
EP - 3488
BT - 8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
PB - John Wiley and Sons Inc.
T2 - 8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
Y2 - 4 August 2013 through 9 August 2013
ER -