Energy dispersive synchrotron diffraction for in-situ analyses of hydrogen behavior in steels

Thomas Kannengiesser, Eitan Dabah

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The extent of hydrogen embrittlement phenomenon is dependent on the interaction of hydrogen with the material i.e. diffusion behavior, lattice distortions, phase transformations and residual stresses developments. For the better understanding of the hydrogen interaction with the metal, possibilities of performing in-situ observations of the mentioned factors has to be accomplished. The EDDI (Energy Dispersive Diffraction) beamline at the BESSY II facility in Berlin provides this possibility and was used in order to investigate the aspects of this phenomenon in in-situ scale. The energy dispersive method entails a synchrotron X-ray white beam with a wide energy range (20-120 keV) which allows a fixed position of the sample and the detector, and combined with the high photons flux it allows a very short measurement time for obtaining a full scale X-Ray Diffraction patterns. In this contribution, the successful usage of high energy X-rays, applied for the first time for hydrogen behavior observations, provided the ability for evaluating in-situ the hydrogen diffusion behavior and the hydrogen interaction with stresses fields in the material. Steel samples were charged with hydrogen and examined by Synchrotron radiation. Two different methods were used in this research; the first is diffusible hydrogen concentration evaluation extracted from the lattice distortions, i.e. changes of the lattice parameter. The second is calculation of the residual stresses present in the sample and the interaction of hydrogen with them, using the known sin2ψ method.

Original languageEnglish
Title of host publication8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
PublisherJohn Wiley and Sons Inc.
Pages3481-3488
Number of pages8
ISBN (Print)9781632660008
DOIs
StatePublished - 1 Jan 2013
Externally publishedYes
Event8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8 - Waikoloa, HI, United States
Duration: 4 Aug 20139 Aug 2013

Publication series

Name8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
Volume4

Conference

Conference8th Pacific Rim International Congress on Advanced Materials and Processing 2013, PRICM 8
Country/TerritoryUnited States
CityWaikoloa, HI
Period4/08/139/08/13

Keywords

  • Energy dispersive diffraction
  • Hydrogen diffusion
  • Hydrogen embrittlement
  • Residual stresses

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Energy dispersive synchrotron diffraction for in-situ analyses of hydrogen behavior in steels'. Together they form a unique fingerprint.

Cite this