Energy-distortion tradeoff for the Gaussian broadcast channel with feedback

Yonathan Murin, Yonatan Kaspi, Ron Dabora, Deniz Gunduz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This work focuses on the minimum transmission energy required for communicating a pair of correlated Gaussian sources over a two-user Gaussian broadcast channel with noiseless and causal channel output feedback (GBCF). We study the fundamental limit on the required transmission energy for broadcasting a pair of source samples, such that each source can be reconstructed at its respective receiver to within a target distortion, when the source-channel bandwidth ratio is not restricted. We derive a lower bound and three distinct upper bounds on the minimum required energy. For the upper bounds we analyze three transmission schemes: Two schemes are based on separate source-channel coding, and apply coding over multiple samples of source pairs. The third scheme is based on joint source-channel coding obtained by extending the Ozarow-Leung (OL) transmission scheme, which applies uncoded linear transmission. Numerical simulations show that despite its simplicity, the energy-distortion tradeoff of the OL-based scheme is close to that of the better separation-based scheme, which indicates that the OL scheme is attractive for energy-efficient source transmission over GBCFs.

Original languageEnglish
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers
Pages1829-1833
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - 10 Aug 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: 10 Jul 201615 Jul 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Conference

Conference2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period10/07/1615/07/16

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Energy-distortion tradeoff for the Gaussian broadcast channel with feedback'. Together they form a unique fingerprint.

Cite this