Enhanced Design of Pure Phase Grayscale Diffractive Optical Elements by Phase-retrieval Assisted Multiplexing of Complex Functions

Shivasubramanian Gopinath, Andrei Bleahu, Tauno Kahro, Aravind Simon John Francis Rajeswary, Ravi Kumar, Kaupo Kukli, Aile Tamm, Joseph Rosen, Vijayakumar Anand

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Designing a pure phase multifunctional diffractive optical element (M-DOE) is a challenging task, as the regular summation of multiple pure phase functions results in a complex function. One of the widely used multiplexing methods to design a pure phase M-DOE is the random multiplexing method. In this method, different pure phase functions are multiplied to mutually exclusive binary random functions before summation. However, M-DOEs designed using the random multiplexing method are prone to scattering noise. In this study, a novel approach based on a modified Gerchberg-Saxton algorithm (GSA) has been proposed and demonstrated for the design of pure-phase multifunctional DOEs. In this approach, the complex M-DOE obtained by regular summation is used as a reference, and with suitable constraints, the amplitude component of the complex M-DOE is transported into the phase component, resulting in a pure phase MDOE. This modified algorithm is called Transport of Amplitude into Phase based on GSA (TAP-GSA). This method has been demonstrated on a well-established incoherent digital holography technique called Fresnel incoherent correlation holography (FINCH). In FINCH, it is necessary to multiplex two-phase masks, which can be achieved using random multiplexing or polarization multiplexing, resulting in reconstruction noise and low light throughput, respectively. Under low-light conditions, random multiplexing is a better choice than the polarization multiplexing method. The M-DOE designed using TAP-GSA for FINCH improved the light throughput and exhibited a higher SNR in comparison to the random multiplexing method.

Original languageEnglish
Title of host publicationHolography
Subtitle of host publicationAdvances and Modern Trends VIII
EditorsAntonio Fimia, Miroslav Hrabovsky
PublisherSPIE
ISBN (Electronic)9781510662681
DOIs
StatePublished - 1 Jan 2023
EventHolography: Advances and Modern Trends VIII 2023 - Prague, Czech Republic
Duration: 24 Apr 202325 Apr 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12574
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceHolography: Advances and Modern Trends VIII 2023
Country/TerritoryCzech Republic
CityPrague
Period24/04/2325/04/23

Keywords

  • Fresnel incoherent correlation holography
  • Gerchberg-Saxton algorithm
  • Spatial multiplexing
  • diffractive lens
  • holography
  • imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Enhanced Design of Pure Phase Grayscale Diffractive Optical Elements by Phase-retrieval Assisted Multiplexing of Complex Functions'. Together they form a unique fingerprint.

Cite this