TY - JOUR
T1 - Enhancing food safety
T2 - A low-cost biosensor for Bacillus licheniformis detection in food products
AU - Jeyaraman, Mareeswaran
AU - Eltzov, Evgeni
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/8/15
Y1 - 2024/8/15
N2 - To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.
AB - To enhance food safety, the need for swift and precise detection of B. licheniformis, a bacterium prevalent in various environments, including soil and food products, is paramount. This study presents an innovative and cost-effective bioassay designed to specifically identify the foodborne pathogen, B. licheniformis, utilizing a colorimetric signal approach. The biosensor, featuring a 3D-printed architecture, incorporates a casein-based liquid-proof gelatine film, selectively liquefying in response to the caseinolytic/proteolytic activity of external enzymes from the pathogen. As the sample liquefies, it progresses through a color layer, causing the migration of dye to an absorbent layer, resulting in a distinct positive signal. This bioassay exhibits exceptional sensitivity, detecting concentrations as low as 1 CFU/mL within a 9.3-h assay duration. Notably, this cost-efficient bioassay outperforms conventional methods in terms of efficacy and cost-effectiveness, offering a straightforward solution for promptly detecting B. licheniformis in food samples.
KW - Biosensors
KW - Food poison
KW - Pathogenic bacteria
KW - Point of care devices
UR - https://www.scopus.com/pages/publications/85192262111
U2 - 10.1016/j.talanta.2024.126152
DO - 10.1016/j.talanta.2024.126152
M3 - Article
C2 - 38718642
AN - SCOPUS:85192262111
SN - 0039-9140
VL - 276
JO - Talanta
JF - Talanta
M1 - 126152
ER -