TY - JOUR
T1 - Enhancing solute transport by pressure-wave driven flow in unsaturated porous media
AU - Kalisman, Doron
AU - Yakirevich, Alexander
AU - Sorek, Shaul
AU - Kamai, Tamir
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Solutes and their limited mobilization in heterogeneous porous media may lead to subsurface salinization and contamination evident in various environmental settings. Previous studies showed that flow and transport driven by pressure waves in porous media under saturated conditions significantly enhance solute displacement compared to drag-dominant (Darcy) flow and transport, resulting in more thorough remediation. However, experimental evidence lacks demonstration of such transport under unsaturated conditions. We investigate solute leaching in a flow cell, experimentally modeling solute displacement from an unsaturated, saline, fine-textured soil region to the surrounding coarse-textured soil. The extent of mobilization efficiency is evaluated by comparing solute breakthrough measurements between two leaching treatments, with drag-dominant continuous flux (CF) and pressure-wave pulse flux (PPF). The results indicate that the PPF treatment provided an additional 75% solute mass that leached from the fine-textured region per unit volume of water compared to the CF. The effect is partly due to the impact of the pressure waves on water imbibition into the medium. The PPF induced relatively high pressure gradients at the wetting front compared to percolation during the CF, thus wetting the media in a more spatially uniform pattern. Consequently, the PPF treatment led to higher water content at and behind the front, which increased the continuity of the water phase across the fine-textured and coarse-textured soils and enhanced transport. The study is a proof of concept for pressure-wave driven flow to enhance local wetting and solute transport in unsaturated soil.
AB - Solutes and their limited mobilization in heterogeneous porous media may lead to subsurface salinization and contamination evident in various environmental settings. Previous studies showed that flow and transport driven by pressure waves in porous media under saturated conditions significantly enhance solute displacement compared to drag-dominant (Darcy) flow and transport, resulting in more thorough remediation. However, experimental evidence lacks demonstration of such transport under unsaturated conditions. We investigate solute leaching in a flow cell, experimentally modeling solute displacement from an unsaturated, saline, fine-textured soil region to the surrounding coarse-textured soil. The extent of mobilization efficiency is evaluated by comparing solute breakthrough measurements between two leaching treatments, with drag-dominant continuous flux (CF) and pressure-wave pulse flux (PPF). The results indicate that the PPF treatment provided an additional 75% solute mass that leached from the fine-textured region per unit volume of water compared to the CF. The effect is partly due to the impact of the pressure waves on water imbibition into the medium. The PPF induced relatively high pressure gradients at the wetting front compared to percolation during the CF, thus wetting the media in a more spatially uniform pattern. Consequently, the PPF treatment led to higher water content at and behind the front, which increased the continuity of the water phase across the fine-textured and coarse-textured soils and enhanced transport. The study is a proof of concept for pressure-wave driven flow to enhance local wetting and solute transport in unsaturated soil.
KW - Flow cell
KW - Leaching
KW - Pressure pulse
KW - Pressure wave
KW - Solute transport
KW - Unsaturated porous media
UR - http://www.scopus.com/inward/record.url?scp=85134686811&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2022.128196
DO - 10.1016/j.jhydrol.2022.128196
M3 - Article
AN - SCOPUS:85134686811
SN - 0022-1694
VL - 612
JO - Journal of Hydrology
JF - Journal of Hydrology
M1 - 128196
ER -