Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode

Long Gu, Jinmei Liu, Nuanyang Cui, Qi Xu, Tao Du, Lu Zhang, Zheng Wang, Changbai Long, Yong Qin

Research output: Contribution to journalArticlepeer-review

182 Scopus citations

Abstract

The low output current density of piezoelectric nanogenerators (PENGs) severely restricts their application for ambient mechanical energy harvest. This has been a key challenge in the development of PENG. Here, to conquer this, based on a piezoelectric material with high piezoelectric coefficient (Sm-PMN-PT), a new design of PENG with a three-dimensional intercalation electrode (IENG) is proposed. By creating many boundary interfaces inside the piezoelectric material, the total amount of surface polarization charges increased, which contributes to an increased current density. The IENG can output a maximum peak short-circuit current of 320 μA, and the corresponding current density 290 μA cm−2 is 1.93 and 1.61 times the record values of PENG and triboelectric nanogenerator (TENG), respectively. It can also charge a 1 μF capacitor from 0 V to 8 V in 21 cycles, and the equivalent surface charge density 1690 μC m−2 is 1.35 times the record value of TENG.

Original languageEnglish
Article number1030
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode'. Together they form a unique fingerprint.

Cite this