Ensemble Learning: Pattern Classification Using Ensemble Methods

Research output: Book/ReportBookpeer-review

Abstract

This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.

Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.

The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.
Original languageEnglish
PublisherWorldScientific
Number of pages300
Volume85
Edition2nd
ISBN (Print)9789811201950, 9789811201967, 9789811201974
DOIs
StatePublished - Mar 2019

Publication series

NameSeries in Machine Perception and Artificial Intelligence
NameEnsemble Learning (2nd Ed.)

Fingerprint

Dive into the research topics of 'Ensemble Learning: Pattern Classification Using Ensemble Methods'. Together they form a unique fingerprint.

Cite this