Abstract
Provision of automated support for planning protocol-directed therapy requires a computer program to take as input clinical data stored in an electronic patient-record system and to generate as output recommendations for therapeutic interventions and laboratory testing that are defined by applicable protocols. This paper presents a synthesis of research carried out at Stanford University to model the therapy-planning task and to demonstrate a component-based architecture for building protocol-based decision-support systems. We have constructed general-purpose software components that (1) interpret abstract protocol specifications to construct appropriate patient-specific treatment plans; (2) infer from time-stamped patient data higher-level, interval-based, abstract concepts; (3) perform time-oriented queries on a time-oriented patient database; and (4) allow acquisition and maintenance of protocol knowledge in a manner that facilitates efficient processing both by humans and by computers. We have implemented these components in a computer system known as EON. Each of the components has been developed, evaluated, and reported independently. We have evaluated the integration of the components as a composite architecture by implementing T-HELPER, a computer-based patient-record system that uses EON to offer advice regarding the management of patients who are following clinical trial protocols for AIDS or HIV infection. A test of the reuse of the software components in a different clinical domain demonstrated rapid development of a prototype application to support protocol-based care of patients who have breast cancer.
Original language | English |
---|---|
Pages (from-to) | 367-388 |
Number of pages | 22 |
Journal | Emerging Infectious Diseases |
Volume | 3 |
Issue number | 6 |
DOIs | |
State | Published - 1 Jan 1996 |
Externally published | Yes |
ASJC Scopus subject areas
- Epidemiology
- Microbiology (medical)
- Infectious Diseases