Abstract
Establishment of cell lines capable of killing leukemia cells, in the absence of alloreactivity against normal host cells, represents a most desirable goal in bone marrow transplantation (BMT) and cancer immunotherapy. By using a human → mouse chimeric model, we demonstrate that allogeneic anti-third-party cytotoxic T lymphocytes (CTLs) depleted of alloreactivity are endowed with a potent anti-B-cell chronic lymphocytic leukemia (B-CLL) reactivity. Likewise, CTL preparations generated from autologous T cells of the same patients with B-CLL exhibited comparable leukemia eradication, suggesting that the reactivity of allogeneic anti-third-party CTLs is not mediated by residual antihost clones. This specificity was also exhibited in vitro, and annexin staining revealed that B-CLL killing is mediated by apoptosis. While the CTLs killing of third-party cells could be blocked by anti-CD3 antibody, the lysis of the B-CLL cells was not inhibited by this antibody, suggesting a T-cell receptor (TCR)-independent cytotoxicity. The role of cell contact leading to apoptosis of B-CLL cells is shown in transwell plates and by anti-lymphocyte function-associated antigen-1 (LFA-1)-blocking antibody. Up-regulation of CD54 and the subsequent apoptosis of B-CLL cells depend on the initial LFA-1/ICAM-1 (intercellular adhesion molecule 1) interaction. Taken together, these results suggest that allogeneic or autologous host nonreactive anti-third-party CTLs may represent a new therapeutic approach for patients with B-CLL.
Original language | English |
---|---|
Pages (from-to) | 3365-3371 |
Number of pages | 7 |
Journal | Blood |
Volume | 105 |
Issue number | 8 |
DOIs | |
State | Published - 15 Apr 2005 |
ASJC Scopus subject areas
- Biochemistry
- Immunology
- Hematology
- Cell Biology