Erdos ? Goes neural: An unsupervised learning framework for combinatorial optimization on graphs

Nikolaos Karalias, Andreas Loukas

Research output: Contribution to journalConference articlepeer-review

62 Scopus citations

Abstract

Combinatorial optimization (CO) problems are notoriously challenging for neural networks, especially in the absence of labeled instances. This work proposes an unsupervised learning framework for CO problems on graphs that can provide integral solutions of certified quality. Inspired by Erdos’ ? probabilistic method, we use a neural network to parametrize a probability distribution over sets. Crucially, we show that when the network is optimized w.r.t. a suitably chosen loss, the learned distribution contains, with controlled probability, a low-cost integral solution that obeys the constraints of the combinatorial problem. The probabilistic proof of existence is then derandomized to decode the desired solutions. We demonstrate the efficacy of this approach to obtain valid solutions to the maximum clique problem and to perform local graph clustering. Our method achieves competitive results on both real datasets and synthetic hard instances.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 1 Jan 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Erdos ? Goes neural: An unsupervised learning framework for combinatorial optimization on graphs'. Together they form a unique fingerprint.

Cite this