Abstract
The widespread use of machine and deep learning algorithms for anomaly detection has created a critical need for robust explanations that can identify the features contributing to anomalies. However, effective evaluation methodologies for anomaly explanations are currently lacking, especially those that compare the explanations against the true underlying causes, or ground truth. This paper aims to address this gap by introducing a rigorous, ground-truth-based framework for evaluating anomaly explanation methods, which enables the assessment of explanation correctness and robustness—key factors for actionable insights in anomaly detection. To achieve this, we present an innovative benchmark dataset of digital circuit truth tables with model-based anomalies, accompanied by local ground truth explanations. These explanations were generated using a novel algorithm designed to accurately identify influential features within each anomaly. Additionally, we propose an evaluation methodology based on correctness and robustness metrics, specifically tailored to quantify the reliability of anomaly explanations. This dataset and evaluation framework are publicly available to facilitate further research and standardize evaluation practices. Our experiments demonstrate the utility of this dataset and methodology by evaluating common model-agnostic explanation methods in an anomaly detection context. The results highlight the importance of ground-truth-based evaluation for reliable and interpretable anomaly explanations, advancing both theory and practical applications in explainable AI. This work establishes a foundation for rigorous, evidence-based assessments of anomaly explanations, fostering greater transparency and trust in AI-driven anomaly detection systems.
Original language | English |
---|---|
Pages (from-to) | 2375-2392 |
Number of pages | 18 |
Journal | AI (Switzerland) |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - 1 Dec 2024 |
Keywords
- anomaly detection
- explainability
- explanation evaluation
- ground truth
ASJC Scopus subject areas
- Artificial Intelligence