TY - JOUR
T1 - Evaluation of adsorbents and eluents for application in virus concentration and adsorption-desorption isotherms for coliphages
AU - Pisharody, Lakshmi
AU - Suresh, Sumathi
AU - Mukherji, Suparna
N1 - Funding Information:
The Tata Centre for Technology and Design, IIT Bombay, provided partial funding in the initial phase of this work. The authors would also like to thank: Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay for providing facilities for TEM, SEM and FTIR analysis, Metallurgical Engineering and Materials Science Department, IIT Bombay for the zeta potential analysis; and Chemical Engineering Department, IIT Bombay for the BET surface area analysis.
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Adsorption elution technique is widely used for virus preconcentration before detection and quantification. However, the existing methods do not provide adequate recovery of viruses. DEAE cellulose, and Moringa oleifera seed protein functionalized rice husk ash (FaRHA) adsorbents were evaluated for the concentration of an enteric virus, Rotavirus A (RVA), an F-specific coliphage, MS2, and a somatic coliphage, SUSP2. Recovery with various adsorbent-eluent pairs was tested using initial coliphage concentration (Co) 104 PFU/mL. An eluent composed of 1.5 M NaCl, 2% Tween 80, and 0.05 M KH2PO4 (pH 9.2) yielded a high recovery of MS2 from DEAE cellulose (82%) and it also yielded high recovery of RVA. However, SUSP2 recovery from DEAE cellulose was ~61%, even after eluent optimization. An eluent comprised of glycine 3X broth, 1.5 M NaCl, 3% Tween 80, and 0.05 M KH2PO4 (pH 10.2) yielded high recovery of SUSP2 from FaRHA (88%). The maximum recovery of MS2 and RVA from FaRHA was lower (77% and 32%, respectively). The Freundlich model provided a good fit to the adsorption-desorption isotherms for the coliphages. For both the coliphages, the Freundlich capacity parameter, KF, was two orders of magnitude higher for DEAE cellulose compared to FaRHA. MS2 recovery from DEAE cellulose was minimally affected by antichaotrophic ions and dissolved organic matter, and higher sorption could be achieved over a wide pH range. For FaRHA, pH variation and various water matrices had a significant adverse effect on coliphage recovery. Thus, DEAE cellulose is a superior adsorbent for virus preconcentration from water samples.
AB - Adsorption elution technique is widely used for virus preconcentration before detection and quantification. However, the existing methods do not provide adequate recovery of viruses. DEAE cellulose, and Moringa oleifera seed protein functionalized rice husk ash (FaRHA) adsorbents were evaluated for the concentration of an enteric virus, Rotavirus A (RVA), an F-specific coliphage, MS2, and a somatic coliphage, SUSP2. Recovery with various adsorbent-eluent pairs was tested using initial coliphage concentration (Co) 104 PFU/mL. An eluent composed of 1.5 M NaCl, 2% Tween 80, and 0.05 M KH2PO4 (pH 9.2) yielded a high recovery of MS2 from DEAE cellulose (82%) and it also yielded high recovery of RVA. However, SUSP2 recovery from DEAE cellulose was ~61%, even after eluent optimization. An eluent comprised of glycine 3X broth, 1.5 M NaCl, 3% Tween 80, and 0.05 M KH2PO4 (pH 10.2) yielded high recovery of SUSP2 from FaRHA (88%). The maximum recovery of MS2 and RVA from FaRHA was lower (77% and 32%, respectively). The Freundlich model provided a good fit to the adsorption-desorption isotherms for the coliphages. For both the coliphages, the Freundlich capacity parameter, KF, was two orders of magnitude higher for DEAE cellulose compared to FaRHA. MS2 recovery from DEAE cellulose was minimally affected by antichaotrophic ions and dissolved organic matter, and higher sorption could be achieved over a wide pH range. For FaRHA, pH variation and various water matrices had a significant adverse effect on coliphage recovery. Thus, DEAE cellulose is a superior adsorbent for virus preconcentration from water samples.
KW - Coliphages
KW - DEAE cellulose
KW - Moringa oleifera
KW - Rice husk ash
KW - Rotavirus
UR - http://www.scopus.com/inward/record.url?scp=85088392344&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2020.126267
DO - 10.1016/j.cej.2020.126267
M3 - Article
AN - SCOPUS:85088392344
VL - 403
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
SN - 1385-8947
M1 - 126267
ER -