Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF

Ajay Kumar Pandey, Mohit Kumar, Sonam Kumari, Priya Kumari, Farnaz Yusuf, Shaik Jakeer, Sumera Naz, Piyush Chandna, Ishita Bhatnagar, Naseem A. Gaur

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Background: Lignocellulosic hydrolysates contain a mixture of hexose (C6)/pentose (C5) sugars and pretreatment-generated inhibitors (furans, weak acids and phenolics). Therefore, robust yeast isolates with characteristics of C6/C5 fermentation and tolerance to pretreatment-derived inhibitors are pre-requisite for efficient lignocellulosic material based biorefineries. Moreover, use of thermotolerant yeast isolates will further reduce cooling cost, contamination during fermentation, and required for developing simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SScF), and consolidated bio-processing (CBP) strategies. Results: In this study, we evaluated thirty-five yeast isolates (belonging to six genera including Saccharomyces, Kluyveromyces, Candida, Scheffersomyces, Ogatea and Wickerhamomyces) for pretreatment-generated inhibitors {furfural, 5-hydroxymethyl furfural (5-HMF) and acetic acid} and thermotolerant phenotypes along with the fermentation performances at 40 °C. Among them, a sugarcane distillery waste isolate, Saccharomyces cerevisiae NGY10 produced maximum 49.77 ± 0.34 g/l and 46.81 ± 21.98 g/l ethanol with the efficiency of 97.39% and 93.54% at 30 °C and 40 °C, respectively, in 24 h using glucose as a carbon source. Furthermore, isolate NGY10 produced 12.25 ± 0.09 g/l and 7.18 ± 0.14 g/l of ethanol with 92.81% and 91.58% efficiency via SHF, and 30.22 g/l and 25.77 g/l ethanol with 86.43% and 73.29% efficiency via SSF using acid- and alkali-pretreated rice straw as carbon sources, respectively, at 40 °C. In addition, isolate NGY10 also produced 92.31 ± 3.39 g/l (11.7% v/v) and 33.66 ± 1.04 g/l (4.26% v/v) ethanol at 40 °C with the yields of 81.49% and 73.87% in the presence of 30% w/v glucose or 4× concentrated acid-pretreated rice straw hydrolysate, respectively. Moreover, isolate NGY10 displayed furfural- (1.5 g/l), 5-HMF (3.0 g/l), acetic acid- (0.2% v/v) and ethanol-(10.0% v/v) tolerant phenotypes. Conclusion: A sugarcane distillery waste isolate NGY10 demonstrated high potential for ethanol production, C5 metabolic engineering and developing strategies for SSF, SScF and CBP.

Original languageEnglish
Article number40
JournalBiotechnology for Biofuels
Volume12
Issue number1
DOIs
StatePublished - 27 Feb 2019
Externally publishedYes

Keywords

  • Ethanol
  • Fermentation
  • Inhibitors
  • SHF
  • SSF
  • Thermo-tolerance

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • General Energy
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF'. Together they form a unique fingerprint.

Cite this