TY - UNPB
T1 - Every Node Counts
T2 - Improving the Training of Graph Neural Networks on Node Classification.
AU - Eliasof, Moshe
AU - Haber, Eldad
AU - Treister, Eran
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022/11/29
Y1 - 2022/11/29
N2 - Graph Neural Networks (GNNs) are prominent in handling sparse and unstructured data efficiently and effectively. Specifically, GNNs were shown to be highly effective for node classification tasks, where labelled information is available for only a fraction of the nodes. Typically, the optimization process, through the objective function, considers only labelled nodes while ignoring the rest. In this paper, we propose novel objective terms for the training of GNNs for node classification, aiming to exploit all the available data and improve accuracy. Our first term seeks to maximize the mutual information between node and label features, considering both labelled and unlabelled nodes in the optimization process. Our second term promotes anisotropic smoothness in the prediction maps. Lastly, we propose a cross-validating gradients approach to enhance the learning from labelled data. Our proposed objectives are general and can be applied to various GNNs and require no architectural modifications. Extensive experiments demonstrate our approach using popular GNNs like GCN, GAT and GCNII, reading a consistent and significant accuracy improvement on 10 real-world node classification datasets.
AB - Graph Neural Networks (GNNs) are prominent in handling sparse and unstructured data efficiently and effectively. Specifically, GNNs were shown to be highly effective for node classification tasks, where labelled information is available for only a fraction of the nodes. Typically, the optimization process, through the objective function, considers only labelled nodes while ignoring the rest. In this paper, we propose novel objective terms for the training of GNNs for node classification, aiming to exploit all the available data and improve accuracy. Our first term seeks to maximize the mutual information between node and label features, considering both labelled and unlabelled nodes in the optimization process. Our second term promotes anisotropic smoothness in the prediction maps. Lastly, we propose a cross-validating gradients approach to enhance the learning from labelled data. Our proposed objectives are general and can be applied to various GNNs and require no architectural modifications. Extensive experiments demonstrate our approach using popular GNNs like GCN, GAT and GCNII, reading a consistent and significant accuracy improvement on 10 real-world node classification datasets.
U2 - 10.48550/arXiv.2211.16631
DO - 10.48550/arXiv.2211.16631
M3 - Preprint
BT - Every Node Counts
ER -