Abstract
Epilepsy has been associated with a dysfunction of the blood-brain barrier. While there is ample evidence that a dysfunction of the blood-brain barrier contributes to epileptogenesis, blood-brain barrier dysfunction as a consequence of single epileptic seizures has not been systematically investigated. We hypothesized that blood-brain barrier dysfunction is temporally and anatomically associated with epileptic seizures in patients and used a newly-established quantitative MRI protocol to test our hypothesis. Twenty-three patients with epilepsy undergoing inpatient monitoring as part of their presurgical evaluation were included in this study (10 females, mean age ± standard deviation: 28.78 ± 8.45). For each patient, we acquired quantitative T 1 relaxation time maps (qT1) after both ictal and interictal injection of gadolinium-based contrast agent. The postictal enhancement of contrast agent was quantified by subtracting postictal qT1 from interictal qT1 and the resulting Î "qT1 was used as a surrogate imaging marker of peri-ictal blood-brain barrier dysfunction. Additionally, the serum concentrations of MMP9 and S100, both considered biomarkers of blood-brain barrier dysfunction, were assessed in serum samples obtained prior to and after the index seizure. Fifteen patients exhibited secondarily generalized tonic-clonic seizures and eight patients exhibited focal seizures at ictal injection of contrast agent. By comparing Î "qT1 of the generalized tonic-clonic seizures and focal seizures groups, the anatomical association between ictal epileptic activity and postictal enhancement of contrast agent could be probed. The generalized tonic-clonic seizures group showed significantly higher Î "qT1 in the whole brain as compared to the focal seizures group. Specific analysis of scans acquired later than 3 h after the onset of the seizure revealed higher Î "qT1 in the generalized tonic-clonic seizures group as compared to the focal seizures group, which was strictly lateralized to the hemisphere of seizure onset. Both MMP9 and S100 showed a significantly increased postictal concentration. The current study provides evidence for the occurrence of a blood-brain barrier dysfunction, which is temporally and anatomically associated with epileptic seizures. qT1 after ictal contrast agent injection is rendered as valuable imaging marker of seizure-associated blood-brain barrier dysfunction and may be measured hours after the seizure. The observation of the strong anatomical association of peri-ictal blood-brain barrier dysfunction may spark the development of new functional imaging modalities for the post hoc visualization of brain areas affected by the seizure.
Original language | English |
---|---|
Pages (from-to) | 2952-2965 |
Number of pages | 14 |
Journal | Brain |
Volume | 141 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2018 |
Keywords
- blood-brain barrier
- epilepsy
- quantitative MRI
- seizures
- serum markers
ASJC Scopus subject areas
- Clinical Neurology