Evolution of the Fermi surface of a doped topological insulator with carrier concentration

E. Lahoud, E. Maniv, M. Shaviv Petrushevsky, M. Naamneh, A. Ribak, S. Wiedmann, L. Petaccia, Z. Salman, K. B. Chashka, Y. Dagan, A. Kanigel

Research output: Contribution to journalArticlepeer-review

91 Scopus citations

Abstract

In an ideal bulk topological insulator (TI) conducting surface states protected by time-reversal symmetry enfold an insulating crystal. However, the archetypical TI, Bi2Se3, is actually never insulating; it is in fact a relatively good metal. Nevertheless, it is the most studied system among all the TIs, mainly due to its simple band structure and large spin-orbit gap. Recently, it was shown that copper intercalated Bi2Se 3 becomes superconducting and it was suggested as a realization of a topological superconductor. Here we use a combination of techniques that are sensitive to the shape of the Fermi surface (FS): the Shubnikov-de Haas effect and angle-resolved photoemission spectroscopy to study the evolution of the FS shape with carrier concentration, n. We find that as n increases, the FS becomes two-dimensional-like. These results are of crucial importance for understanding the superconducting properties of CuxBi2Se3.

Original languageEnglish
Article number195107
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume88
Issue number19
DOIs
StatePublished - 5 Nov 2013
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Evolution of the Fermi surface of a doped topological insulator with carrier concentration'. Together they form a unique fingerprint.

Cite this