Evolutionary and functional insights into the mechanism underlying body-size-related adaptation of mammalian hemoglobin

Olga Rapp, Ofer Yifrach

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Hemoglobin (Hb) represents a model protein to study molecular adaptation in vertebrates. Although both affinity and cooperativity of oxygen binding to Hb affect tissue oxygen delivery, only the former was thought to determine molecular adaptations of Hb. Here, we suggest that Hb affinity and cooperativity reflect evolutionary and physiological adaptions that optimized tissue oxygen delivery. To test this hypothesis, we derived the relationship between the Hill coefficient and the relative affinity and conformational changes parameters of the Monod-Wymann-Changeux allosteric model and graphed the ‘biophysical Hill landscape’ describing this relation. We found that mammalian Hb cooperativity values all reside on a ridge of maximum cooperativity along this landscape that allows for both gross-and fine-tuning of tissue oxygen unloading to meet the distinct metabolic requirements of mammalian tissues for oxygen. Our findings reveal the mechanism underlying body size-related adaptation of mammalian Hb. The generality and implications of our findings are discussed.

Original languageEnglish
Article numbere47640
JournaleLife
Volume8
DOIs
StatePublished - 1 Oct 2019

ASJC Scopus subject areas

  • Neuroscience (all)
  • Immunology and Microbiology (all)
  • Biochemistry, Genetics and Molecular Biology (all)

Fingerprint

Dive into the research topics of 'Evolutionary and functional insights into the mechanism underlying body-size-related adaptation of mammalian hemoglobin'. Together they form a unique fingerprint.

Cite this