Explicit learning curves for transduction and application to clustering and compression algorithms

Philip Derbeko, Ran El-Yaniv, Ron Meir

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Inductive learning is based on inferring a general rule from a finite data set and using it to label new data. In transduction one attempts to solve the problem of using a labeled training set to label a set of unlabeled points, which are given to the learner prior to learning. Although transduction seems at the outset to be an easier task than induction, there have not been many provably useful algorithms for transduction. Moreover, the precise relation between induction and transduction has not yet been determined. The main theoretical developments related to transduction were presented by Vapnik more than twenty years ago. One of Vapnik's basic results is a rather tight error bound for transductive classification based on an exact computation of the hypergeometric tail. While tight, this bound is given implicitly via a computational routine. Our first contribution is a somewhat looser but explicit characterization of a slightly extended PAC-Bayesian version of Vapnik's transductive bound. This characterization is obtained using concentration inequalities for the tail of sums of random variables obtained by sampling without replacement. We then derive error bounds for compression schemes such as (transductive) support vector machines and for transduction algorithms based on clustering. The main observation used for deriving these new error bounds and algorithms is that the unlabeled test points, which in the transductive setting are known in advance, can be used in order to construct useful data dependent prior distributions over the hypothesis space.

Original languageEnglish
Pages (from-to)117-142
Number of pages26
JournalJournal Of Artificial Intelligence Research
StatePublished - 1 Jan 2004
Externally publishedYes

ASJC Scopus subject areas

  • Artificial Intelligence


Dive into the research topics of 'Explicit learning curves for transduction and application to clustering and compression algorithms'. Together they form a unique fingerprint.

Cite this