Exploring manufacturing process and degradation products of gilt and painted leather

Morena Iorio, Valerio Graziani, Sergio Lins, Stefano Ridolfi, Paolo Branchini, Andrea Fabbri, Gabriel Ingo, Gabriella Di Carlo, Luca Tortora

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

In this work, we studied the manufacturing processes and the conservation state of gilt and painted leather fragments from Palazzo Chigi in Ariccia (Italy) by using different analytical techniques. Leather fragments present a silver leaf superimposed onto leather support. A gold varnish and different painted layers decorate it all. A top-down analytical approach was used to investigate this complex multilayer structure, which adopted techniques with different sampling depths. Organic and inorganic constitutive materials together with related degradation products were studied by time of flight secondary ion mass spectrometry (ToF-SIMS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and macro X-ray fluorescence (MA-XRF). The findings have revealed the presence of different elements and species as calcium and iron in the leather support, which was attributed to the un-hairing process in the leather tanning. Regarding what concerns the silver leaf, where the varnish cracked, silver chlorides, oxides, and sulfides were detected as degradation products of the silver leaf. Proteinaceous compounds were also identified where the silver leaf is unprotected by the varnish. These ion signals reveal a potential use of animal glue on both sides of the silver leaf to promote durable adhesion. In the gold varnish, the surface analysis revealed organic compounds such as resins and oils. In particular, the copresence of linoleic, arachidonic, and lignoceric acid ion signals in the yellow area suggests the use of aloe as a colorant. Lead ions in the same area were detected and attributed to the use of lead as siccative. Blue areas were obtained by using indigo and lead white in addition to an oil binder. This is confirmed by the detection of indigotin, fatty acid, and lead soap ion signals. A copper-based pigment was used to depict the green areas and copper oxalates were identified as its degradation products. Lastly, no significant information about the red colorant was obtained. Colophony is present as a component of the final varnish.

Original languageEnglish
Article number3016
JournalApplied Sciences (Switzerland)
Volume9
Issue number15
DOIs
StatePublished - 1 Jan 2019
Externally publishedYes

Keywords

  • ATR-FTIR
  • Degradation products
  • Leather
  • MA-XRF
  • Manufacturing process
  • ToF-SIMS

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Exploring manufacturing process and degradation products of gilt and painted leather'. Together they form a unique fingerprint.

Cite this