TY - JOUR
T1 - Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance
AU - Brahimi-Horn, M. Christiane
AU - Ben-Hail, Danya
AU - Ilie, Marius
AU - Gounon, Pierre
AU - Rouleau, Matthieu
AU - Hofman, Veŕonique
AU - Doyen, Jeŕom̂e
AU - Mari, Bernard
AU - Shoshan-Barmatz, Varda
AU - Hofman, Paul
AU - Pouysseǵur, Jacques
AU - Mazure, Nathalie M.
PY - 2012/4/15
Y1 - 2012/4/15
N2 - Resistance to chemotherapy-induced apoptosis of tumor cells represents a major hurdle to efficient cancer therapy. Although resistance is a characteristic of tumor cells that evolve in a low oxygen environment (hypoxia), the mechanisms involved remain elusive. We observed that mitochondria of certain hypoxic cells take on an enlarged appearance with reorganized cristae. In these cells, we found that a major mitochondrial protein regulating metabolism and apoptosis, the voltage-dependent anion channel 1 (VDAC1), was linked to chemoresistance when in a truncated (VDAC1-ΔC) but active form. The formation of truncated VDAC1, which had a similar channel activity and voltage dependency as full-length, was hypoxia-inducible factor-1 (HIF-1)-dependent and could be inhibited in the presence of the tetracycline antibiotics doxycycline and minocycline, known inhibitors of metalloproteases. Its formation was also reversible upon cell reoxygenation and associated with cell survival through binding to the antiapoptotic protein hexokinase. Hypoxic cells containing VDAC1-ΔC were less sensitive to staurosporine- and etoposide-induced cell death, and silencing of VDAC1-ΔC or treatment with the tetracycline antibiotics restored sensitivity. Clinically, VDAC1-ΔC was detected in tumor tissues of patients with lung adenocarcinomas and was found more frequently in large and late-stage tumors. Together, our findings show that via induction of VDAC1-ΔC, HIF-1 confers selective protection from apoptosis that allows maintenance of ATP and cell survival in hypoxia. VDAC1-ΔC may also hold promise as a biomarker for tumor progression in chemotherapy-resistant patients.
AB - Resistance to chemotherapy-induced apoptosis of tumor cells represents a major hurdle to efficient cancer therapy. Although resistance is a characteristic of tumor cells that evolve in a low oxygen environment (hypoxia), the mechanisms involved remain elusive. We observed that mitochondria of certain hypoxic cells take on an enlarged appearance with reorganized cristae. In these cells, we found that a major mitochondrial protein regulating metabolism and apoptosis, the voltage-dependent anion channel 1 (VDAC1), was linked to chemoresistance when in a truncated (VDAC1-ΔC) but active form. The formation of truncated VDAC1, which had a similar channel activity and voltage dependency as full-length, was hypoxia-inducible factor-1 (HIF-1)-dependent and could be inhibited in the presence of the tetracycline antibiotics doxycycline and minocycline, known inhibitors of metalloproteases. Its formation was also reversible upon cell reoxygenation and associated with cell survival through binding to the antiapoptotic protein hexokinase. Hypoxic cells containing VDAC1-ΔC were less sensitive to staurosporine- and etoposide-induced cell death, and silencing of VDAC1-ΔC or treatment with the tetracycline antibiotics restored sensitivity. Clinically, VDAC1-ΔC was detected in tumor tissues of patients with lung adenocarcinomas and was found more frequently in large and late-stage tumors. Together, our findings show that via induction of VDAC1-ΔC, HIF-1 confers selective protection from apoptosis that allows maintenance of ATP and cell survival in hypoxia. VDAC1-ΔC may also hold promise as a biomarker for tumor progression in chemotherapy-resistant patients.
UR - http://www.scopus.com/inward/record.url?scp=84860212465&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-11-3940
DO - 10.1158/0008-5472.CAN-11-3940
M3 - Article
C2 - 22389449
AN - SCOPUS:84860212465
SN - 0008-5472
VL - 72
SP - 2140
EP - 2150
JO - Cancer Research
JF - Cancer Research
IS - 8
ER -