Expression of heat shock protein 83 in Leishmania is regulated post-transcriptionally

Miriam Argaman, Radi Aly, Michal Shapira

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


Mechanisms for regulation of heat shock protein (hsp) 83 expression were examined in Leishmania amazonensis. Transcripts of hsp83 accumulated upon temperature elevation; however, in contrast to non-protozoan eukaryotes (i.e. Drosophila, yeast, avian or human cells), no transcriptional activation was observed. The increase in the hsp83 mRNA level evolved from temperature induced variations in mRNA turn-over: the hsp83 transcript was rapidly degraded at normal temperatures, whereas heat shock led to its stabilization. The quick decay of the mRNA at lower temperatures was dependent on active protein synthesis. A similar pattern of regulation was observed for the transfected chloramphenicol acetyltransferase (CAT) gene, which was flanked by sequences from the hsp83 intergenic region (IR), and cloned into the pX transfection vector (pX-ICI). CAT mRNA was abundant at normal temperatures and further accumulated upon temperature elevation. The altered turn-over rates of CAT mRNA at the different temperatures were observed only in the presence of flanking hsp83 IR sequences. The increase in temperature also affected translational regulation of hsps, and synthesis of hsp83 was more efficient at 35°C than at 26°C. However, the effect on translation was transient, and the steady state level of the protein was hardly altered.

Original languageEnglish
Pages (from-to)95-110
Number of pages16
JournalMolecular and Biochemical Parasitology
Issue number1
StatePublished - 1 Jan 1994
Externally publishedYes


  • Heat shock protein 83
  • Leishmania amazonensis
  • Post-transcriptional regulation
  • mRNA stability


Dive into the research topics of 'Expression of heat shock protein 83 in<i> Leishmania</i> is regulated post-transcriptionally'. Together they form a unique fingerprint.

Cite this