Abstract
The Lucas-Kanade (LK) method is a classic tracking algorithm exploiting target structural constraints thorough template matching. Extended Lucas Kanade or ELK casts the original LK algorithm as a maximum likelihood optimization and then extends it by considering pixel object / background likelihoods in the optimization. Template matching and pixel-based object / background segregation are tied together by a unified Bayesian framework. In this framework two log-likelihood terms related to pixel object / background affiliation are introduced in addition to the standard LK template matching term. Tracking is performed using an EM algorithm, in which the E-step corresponds to pixel object/background inference, and the M-step to parameter optimization. The final algorithm, implemented using a classifier for object / background modeling and equipped with simple template update and occlusion handling logic, is evaluated on two challenging data-sets containing 50 sequences each. The first is a recently published benchmark where ELK ranks 3rd among 30 tracking methods evaluated. On the second data-set of vehicles undergoing severe view point changes ELK ranks in 1st place outperforming state-of-the-art methods.
Original language | English |
---|---|
Pages (from-to) | 142-156 |
Number of pages | 15 |
Journal | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Volume | 8693 LNCS |
Issue number | PART 5 |
DOIs | |
State | Published - 1 Jan 2014 |
Externally published | Yes |
Event | 13th European Conference on Computer Vision, ECCV 2014 - Zurich, Switzerland Duration: 6 Sep 2014 → 12 Sep 2014 |
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science