Factors Determining the Rate and Selectivity of 4e-/4H+ Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes

Sudipta Chatterjee, Kushal Sengupta, Biswajit Mondal, Subal Dey, Abhishek Dey

Research output: Contribution to journalArticlepeer-review

86 Scopus citations


ConspectusReactivity as well as selectivity are crucial in the activation and electrocatalytic reduction of molecular oxygen. Recent developments in the understanding of the mechanism of electrocatalytic O2 reduction by iron porphyrin complexes in situ using surface enhanced resonance Raman spectroscopy coupled to rotating disc electrochemistry (SERRS-RDE) in conjunction with H/D isotope effects on electrocatalytic current reveals that the rate of O2 reduction, ∼104 to 105 M-1 s-1 for simple iron porphyrins, is limited by the rate of O-O bond cleavage of an intermediate ferric peroxide species (FeIII-OOH). SERRS-RDE probes the system in operando when it is under steady state such that any intermediate species that has a greater rate of formation relative to its rate of decay, including the rate determining species, would accumulate and can be identified. This technique is particularly well suited to investigate iron porphyrin electrocatalysts as the intense symmetric ligand vibrations allow determination of the oxidation and spin states of the bound iron with high fidelity.The rate of O2 reduction could be tuned up by 3 orders of magnitude by incorporating residues in the catalyst design that can exert "push" or "pull" effects, that is, axial phenolate and thiolate ligands and distal arginine residues. Similarly the rate of O-O bond cleavage can be enhanced by several orders of magnitude upon incorporating a distal Cu site and installing the active site in a hydrophobic protein environment in synthetic models and biosynthetic protein scaffolds. The selectivity, however, is solely determined by the site of protonation of a ferric peroxide (FeIII-OOH) intermediate and can be governed by installing preorganized second sphere residues in the distal pocket. The 4e-/4H+ reduction of O2 entails protonation of the distal oxygen of the FeIII-OOH species, while 2e-/2H+ reduction requires the proximal oxygen to be protonated.Mechanistic investigations of CO2 reduction by iron porphyrins reveal that the rate-determining step is the C-O bond cleavage of a FeII-COOH species analogous to the O-O bond cleavage step of a FeIII-OOH species in O2 reduction. The selectivity, resulting in either CO or HCOOH, is determined by the site of protonation of this species. These similarities suggests that the chemical principles governing the rate and selectivity of reduction of small molecules like O2, CO2, NOx, and SOx may be quite similar in nature.

Original languageEnglish
Pages (from-to)1744-1753
Number of pages10
JournalAccounts of Chemical Research
Issue number7
StatePublished - 18 Jul 2017
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry


Dive into the research topics of 'Factors Determining the Rate and Selectivity of 4e-/4H+ Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes'. Together they form a unique fingerprint.

Cite this