Fault-tolerant spacecraft attitude control via jump-linear quadratic control

Aviran Sadon, Daniel Choukroun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work is concerned with the development of a suboptimal control algorithm for Markovian jump-linear systems, and its application to fault-tolerant spacecraft magnetic attitude control. For completeness, the jump-linear quadratic optimal controller with full state and mode information is presented. Relaxing the assumption of perfect mode information, a similar optimal control problem is formulated where the mode is observed via discrete measurements. The elements of the measurement matrix, i.e. the probabilities for correct and wrong mode observations are assumed known. The optimal controller is developed, which requires an exponentially growing computational burden, and a suboptimal controller is proposed that only requires knowledge of the current mode measurement. This controller is finite memory and possess some of the classical linear quadratic regulator features such as the linear state feedback structure and a state quadratic optimal cost-to-go. The performances of the suggested algorithm are illustrated through extensive Monte-Carlo simulations on a simple numerical example. A realistic fault-tolerant spacecraft magnetic attitude controller is developed based on the proposed approach. The attitude controller succeeds in mitigating the destabilizing effect of corrupted mode observations while being computationally efficient.

Original languageEnglish
Title of host publication54th Israel Annual Conference on Aerospace Sciences 2014
PublisherTechnion – Israel Institute of Technology
Pages971-988
Number of pages18
ISBN (Print)9781632662651
StatePublished - 1 Jan 2014
Event54th Israel Annual Conference on Aerospace Sciences, IACAS 2014 - Tel-Aviv and Haifa, Israel
Duration: 19 Feb 201420 Feb 2014

Publication series

Name54th Israel Annual Conference on Aerospace Sciences 2014
Volume2

Conference

Conference54th Israel Annual Conference on Aerospace Sciences, IACAS 2014
Country/TerritoryIsrael
CityTel-Aviv and Haifa
Period19/02/1420/02/14

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Fault-tolerant spacecraft attitude control via jump-linear quadratic control'. Together they form a unique fingerprint.

Cite this